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Founded in 1989 by the husband-and-wife team of Clive

Humby (a mathematician) and Edwina Dunn (a mar-

keter), dunnhumby combines proven natural abilities

with big ideas to find clues and patterns as to what cus-

tomers are buying and why. The company turns these in-

sights into actionable strategies that create dramatic

growth and sustainable loyalty, ultimately improving

brand value and the customer experience.

Employing more than 950 people in Europe, Asia,

and the Americas, dunnhumby serves a prestigious list of

companies, including Kroger, Tesco, Coca-Cola, Gen-

eral Mills, Kimberly-Clark, PepsiCo, Procter & Gamble,

and Home Depot. dunnhumbyUSA is a joint venture be-

tween the Kroger Company and dunnhumby and has of-

fices in New York, Chicago, Atlanta, Minneapolis,

Cincinnati, and Portland.

The company’s research begins with data collected

about a client’s customers. Data come from customer re-

ward or discount card purchase records, electronic point-

of-sale transactions, and traditional market research.

Analysis of the data often translates billions of data points

into detailed insights about the behavior, preferences, and

lifestyles of the customers. Such insights allow for more

effective merchandising programs to be activated, in-

cluding strategy recommendations on pricing, promo-

tion, advertising, and product assortment decisions.

Researchers have used a multiple regression tech-

nique referred to as logistic regression to help in their

analysis of customer-based data. Using logistic regres-

sion, an estimated multiple regression equation of the fol-

lowing form is developed.

The dependent variable is an estimate of the prob-

ability that a customer belongs to a particular customer

ŷ

ŷ � b0 � b1x1 � b2 
x2 � b3 

x3 � . . . � bp 
xp

group. The independent variables x1, x2, x3, . . . , xp are

measures of the customer’s actual shopping behavior and 

may include the specific items purchased, number of

items purchased, amount purchased, day of the week,

hour of the day, and so on. The analysis helps identify the

independent variables that are most relevant in predict-

ing the customer’s group and provides a better under-

standing of the customer population, enabling further

analysis with far greater confidence. The focus of the

analysis is on understanding the customer to the point of

developing merchandising, marketing, and direct mar-

keting programs that will maximize the relevancy and

service to the customer group.

In this chapter, we will introduce multiple regres-

sion and show how the concepts of simple linear re-

gression introduced in Chapter 14 can be extended to

the multiple regression case. In addition, we will show

how computer software packages are used for multiple

regression. In the final section of the chapter we intro-

duce logistic regression using an example that illus-

trates how the technique is used in a marketing research

application.

dunnhumby uses logistic regression to predict

customer shopping behavior. © Ariel Skelley/Blend

Images/Jupiter Images.

dunnhumby*
LONDON, ENGLAND

STATISTICS in PRACTICE

*The authors are indebted to Paul Hunter, Senior Vice President of
Solutions for dunnhumby for providing this Statistics in Practice.
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MULTIPLE REGRESSION MODEL

(15.1)y � �0 � �1x1 � �2 
x2 � . . . � �p 

xp � �

MULTIPLE REGRESSION EQUATION

(15.2)E(
 
y) � �0 � �1x1 � �2 

x2 � . . . � �p 
xp

In Chapter 14 we presented simple linear regression and demonstrated its use in develop-

ing an estimated regression equation that describes the relationship between two variables.

Recall that the variable being predicted or explained is called the dependent variable and

the variable being used to predict or explain the dependent variable is called the indepen-

dent variable. In this chapter we continue our study of regression analysis by considering

situations involving two or more independent variables. This subject area, called multiple

regression analysis, enables us to consider more factors and thus obtain better estimates

than are possible with simple linear regression.

15.1 Multiple Regression Model

Multiple regression analysis is the study of how a dependent variable y is related to two or

more independent variables. In the general case, we will use p to denote the number of in-

dependent variables.

Regression Model and Regression Equation

The concepts of a regression model and a regression equation introduced in the preceding

chapter are applicable in the multiple regression case. The equation that describes how the

dependent variable y is related to the independent variables x1, x2, . . . , xp and an error term

is called the multiple regression model. We begin with the assumption that the multiple

regression model takes the following form.

In the multiple regression model, �0, �1, �2, . . . , �p are the parameters and the error term �

(the Greek letter epsilon) is a random variable. A close examination of this model reveals

that y is a linear function of x1, x2, . . . , xp (the �0 � �1x1 � �2x2 � . . . � �pxp part) plus the

error term �. The error term accounts for the variability in y that cannot be explained by the

linear effect of the p independent variables.

In Section 15.4 we will discuss the assumptions for the multiple regression model and

�. One of the assumptions is that the mean or expected value of � is zero. A consequence 

of this assumption is that the mean or expected value of y, denoted E( y), is equal to

�0 � �1x1 � �2x2 � . . . � �pxp. The equation that describes how the mean value of y is re-

lated to x1, x2, . . . , xp is called the multiple regression equation.

Estimated Multiple Regression Equation

If the values of �0, �1, �2, . . . , �p were known, equation (15.2) could be used to compute

the mean value of y at given values of x1, x2, . . . , xp. Unfortunately, these parameter values

will not, in general, be known and must be estimated from sample data. A simple ran-

dom sample is used to compute sample statistics b0, b1, b2, . . . , bp that are used as the point
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The estimation process for multiple regression is shown in Figure 15.1.

15.2 Least Squares Method

In Chapter 14, we used the least squares method to develop the estimated regression equa-

tion that best approximated the straight-line relationship between the dependent and inde-

pendent variables. This same approach is used to develop the estimated multiple regression

equation. The least squares criterion is restated as follows.

LEAST SQUARES CRITERION

(15.4)min �(
 
yi � ŷi 

)2

estimators of the parameters �0, �1, �2, . . . , �p. These sample statistics provide the follow-

ing estimated multiple regression equation.

FIGURE 15.1 THE ESTIMATION PROCESS FOR MULTIPLE REGRESSION

ESTIMATED MULTIPLE REGRESSION EQUATION

(15.3)

where

b0, b1, b2, . . . , bp are the estimates of �0, �1, �2, . . . , �p

ŷ � estimated value of the dependent variable

ŷ � b0 � b1x1 � b2 
x2 � . . . � bp 

xp

In simple linear regression,

b0 and b1 were the sample

statistics used to estimate

the parameters �0 and �1.

Multiple regression

parallels this statistical

inference process, with b0,

b1, b2, . . . , bp denoting the

sample statistics used 

to estimate the parameters

�0, �1, �2, . . . , �p.
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where

yi �

ŷi �

observed value of the dependent variable for the ith observation

estimated value of the dependent variable for the ith observation

The estimated values of the dependent variable are computed by using the estimated mul-

tiple regression equation,

As expression (15.4) shows, the least squares method uses sample data to provide the val-

ues of b0, b1, b2, . . . , bp that make the sum of squared residuals [the deviations between the

observed values of the dependent variable ( yi) and the estimated values of the dependent

variable ( )] a minimum.

In Chapter 14 we presented formulas for computing the least squares estimators b0 and

b1 for the estimated simple linear regression equation � b0 � b1x. With relatively small

data sets, we were able to use those formulas to compute b0 and b1 by manual calculations.

In multiple regression, however, the presentation of the formulas for the regression coeffi-

cients b0, b1, b2, . . . , bp involves the use of matrix algebra and is beyond the scope of this

text. Therefore, in presenting multiple regression, we focus on how computer software

packages can be used to obtain the estimated regression equation and other information.

The emphasis will be on how to interpret the computer output rather than on how to make

the multiple regression computations.

An Example: Butler Trucking Company

As an illustration of multiple regression analysis, we will consider a problem faced by the

Butler Trucking Company, an independent trucking company in southern California.Amajor

portion of Butler’s business involves deliveries throughout its local area. To develop better

work schedules, the managers want to estimate the total daily travel time for their drivers.

Initially the managers believed that the total daily travel time would be closely related

to the number of miles traveled in making the daily deliveries. A simple random sample of

10 driving assignments provided the data shown in Table 15.1 and the scatter diagram

shown in Figure 15.2. After reviewing this scatter diagram, the managers hypothesized that

the simple linear regression model y � �0 � �1x1 � � could be used to describe the rela-

tionship between the total travel time ( y) and the number of miles traveled (x1). To estimate

ŷ

ŷi

ŷ � b0 � b1x1 � b2 
x2 � . . . � bp 

xp

Driving x1 � Miles y � Travel Time
Assignment Traveled (hours)

1 100 9.3

2 50 4.8

3 100 8.9

4 100 6.5

5 50 4.2

6 80 6.2

7 75 7.4

8 65 6.0

9 90 7.6

10 90 6.1

TABLE 15.1 PRELIMINARY DATA FOR BUTLER TRUCKING

fileWEB

Butler
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the parameters �0 and �1, the least squares method was used to develop the estimated re-

gression equation.

(15.5)

In Figure 15.3, we show the Minitab computer output from applying simple linear re-

gression to the data in Table 15.1. The estimated regression equation is

At the .05 level of significance, the F value of 15.81 and its corresponding p-value of .004

indicate that the relationship is significant; that is, we can reject H0: �1 � 0 because the 

p-value is less than α � .05. Note that the same conclusion is obtained from the t value 

of 3.98 and its associated p-value of .004. Thus, we can conclude that the relationship be-

tween the total travel time and the number of miles traveled is significant; longer travel

times are associated with more miles traveled. With a coefficient of determination (ex-

pressed as a percentage) of R-sq � 66.4%, we see that 66.4% of the variability in travel time

can be explained by the linear effect of the number of miles traveled. This finding is fairly

good, but the managers might want to consider adding a second independent variable to 

explain some of the remaining variability in the dependent variable.

In attempting to identify another independent variable, the managers felt that the num-

ber of deliveries could also contribute to the total travel time. The Butler Trucking data, with

the number of deliveries added, are shown in Table 15.2. The Minitab computer solution

with both miles traveled (x1) and number of deliveries (x2) as independent variables is 

shown in Figure 15.4. The estimated regression equation is

(15.6)ŷ � � .869 � .0611x1 � .923x
 2

ŷ � 1.27 � .0678x1

ŷ � b0 � b1x1
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FIGURE 15.2 SCATTER DIAGRAM OF PRELIMINARY DATA FOR BUTLER TRUCKING
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The regression equation is

Time = 1.27 + 0.0678 Miles

Predictor     Coef  SE Coef     T      p

Constant     1.274    1.401  0.91  0.390

Miles      0.06783  0.01706  3.98  0.004

S = 1.00179   R-sq = 66.4%   R-sq(adj) = 62.2%

Analysis of Variance

SOURCE          DF      SS      MS      F      p

Regression       1  15.871  15.871  15.81  0.004

Residual Error   8   8.029   1.004

Total            9  23.900

FIGURE 15.3 MINITAB OUTPUT FOR BUTLER TRUCKING WITH ONE

INDEPENDENT VARIABLE

In the Minitab output the

variable names Miles and

Time were entered as the

column headings on the

worksheet; thus, x1 � Miles

and y � Time.

In the next section we will discuss the use of the coefficient of multiple determination in

measuring how good a fit is provided by this estimated regression equation. Before doing

so, let us examine more carefully the values of b1 � .0611 and b2 � .923 in equation (15.6).

Note on Interpretation of Coefficients

One observation can be made at this point about the relationship between the estimated

regression equation with only the miles traveled as an independent variable and the equation

that includes the number of deliveries as a second independent variable. The value of b1

is not the same in both cases. In simple linear regression, we interpret b1 as an estimate of

the change in y for a one-unit change in the independent variable. In multiple regression

analysis, this interpretation must be modified somewhat. That is, in multiple regression analy-

sis, we interpret each regression coefficient as follows: bi represents an estimate of the change

in y corresponding to a one-unit change in xi when all other independent variables are held con-

stant. In the Butler Trucking example involving two independent variables, b1 � .0611. Thus,

Driving x1 � Miles x2 � Number y � Travel Time
Assignment Traveled of Deliveries (hours)

1 100 4 9.3

2 50 3 4.8

3 100 4 8.9

4 100 2 6.5

5 50 2 4.2

6 80 2 6.2

7 75 3 7.4

8 65 4 6.0

9 90 3 7.6

10 90 2 6.1

TABLE 15.2 DATA FOR BUTLER TRUCKING WITH MILES TRAVELED (x1) AND NUMBER

OF DELIVERIES (x2) AS THE INDEPENDENT VARIABLES

fileWEB

Butler
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The regression equation is

Time = - 0.869 + 0.0611 Miles + 0.923 Deliveries

Predictor       Coef   SE Coef      T      p

Constant     -0.8687    0.9515  -0.91  0.392

Miles       0.061135  0.009888   6.18  0.000

Deliveries    0.9234    0.2211   4.18  0.004

S = 0.573142   R-sq = 90.4%   R-sq(adj) = 87.6%

Analysis of Variance

SOURCE          DF      SS      MS      F      p

Regression       2  21.601  10.800  32.88  0.000

Residual Error   7   2.299   0.328

Total            9  23.900

FIGURE 15.4 MINITAB OUTPUT FOR BUTLER TRUCKING WITH TWO

INDEPENDENT VARIABLES

In the Minitab output the

variable names Miles,

Deliveries, and Time were

entered as the column

headings on the worksheet;

thus, x1 � Miles, x2 �

Deliveries, and y � Time.

.0611 hours is an estimate of the expected increase in travel time corresponding to an increase

of one mile in the distance traveled when the number of deliveries is held constant. Similarly,

because b2 � .923, an estimate of the expected increase in travel time corresponding to an in-

crease of one delivery when the number of miles traveled is held constant is .923 hours.

Exercises

Note to student: The exercises involving data in this and subsequent sections were designed

to be solved using a computer software package.

Methods

1. The estimated regression equation for a model involving two independent variables and 

10 observations follows.

a. Interpret b1 and b2 in this estimated regression equation.

b. Estimate y when x1 � 180 and x2 � 310.

2. Consider the following data for a dependent variable y and two independent variables, x1

and x2.

ŷ � 29.1270 � .5906x1 � .4980x
 2

testSELF

x1 x2 y

30 12 94
47 10 108
25 17 112
51 16 178
40 5 94
51 19 175
74 7 170

(continued)

fileWEB

Exer2
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x1 x2 y

36 12 117
59 13 142
76 16 211

a. Develop an estimated regression equation relating y to x1. Estimate y if x1 � 45.

b. Develop an estimated regression equation relating y to x2. Estimate y if x2 � 15.

c. Develop an estimated regression equation relating y to x1 and x2. Estimate y if x1 � 45

and x2 � 15.

3. In a regression analysis involving 30 observations, the following estimated regression

equation was obtained.

a. Interpret b1, b2, b3, and b4 in this estimated regression equation.

b. Estimate y when x1 � 10, x2 � 5, x3 � 1, and x4 � 2.

Applications

4. A shoe store developed the following estimated regression equation relating sales to in-

ventory investment and advertising expenditures.

where

a. Estimate sales resulting from a $15,000 investment in inventory and an advertising

budget of $10,000.

b. Interpret b1 and b2 in this estimated regression equation.

5. The owner of Showtime Movie Theaters, Inc., would like to estimate weekly gross revenue

as a function of advertising expenditures. Historical data for a sample of eight weeks follow.

x1 �

x2 �

y �

inventory investment ($1000s)

advertising expenditures ($1000s)

sales ($1000s)

ŷ � 25 � 10x1 � 8x
 2

ŷ � 17.6 � 3.8x1 � 2.3x
 2 � 7.6x3 � 2.7x4

testSELF

Weekly Television Newspaper
Gross Revenue Advertising Advertising

($1000s) ($1000s) ($1000s)

96 5.0 1.5
90 2.0 2.0
95 4.0 1.5
92 2.5 2.5
95 3.0 3.3
94 3.5 2.3
94 2.5 4.2
94 3.0 2.5

a. Develop an estimated regression equation with the amount of television advertising as

the independent variable.

b. Develop an estimated regression equation with both television advertising and news-

paper advertising as the independent variables.

c. Is the estimated regression equation coefficient for television advertising expenditures

the same in part (a) and in part (b)? Interpret the coefficient in each case.

fileWEB

Showtime
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d. What is the estimate of the weekly gross revenue for a week when $3500 is spent on

television advertising and $1800 is spent on newspaper advertising?

6. In baseball, a team’s success is often thought to be a function of the team’s hitting and pitch-

ing performance. One measure of hitting performance is the number of home runs the team

hits, and one measure of pitching performance is the earned run average for the team’s pitch-

ing staff. It is generally believed that teams that hit more home runs and have a lower earned

run average will win a higher percentage of the games played. The following data show the

proportion of games won, the number of team home runs (HR), and the earned run average

(ERA) for the 16 teams in the National League for the 2003 Major League Baseball season

(USA Today website, January 7, 2004).

a. Determine the estimated regression equation that could be used to predict the propor-

tion of games won given the number of team home runs.

b. Determine the estimated regression equation that could be used to predict the propor-

tion of games won given the earned run average for the team’s pitching staff.

c. Determine the estimated regression equation that could be used to predict the propor-

tion of games won given the number of team home runs and the earned run average

for the team’s pitching staff.

d. For the 2003 season San Diego won only 39.5% of the games they played, the lowest

in the National League. To improve next year’s record, the team tried to acquire new

players who would increase the number of team home runs to 180 and decrease the

earned run average for the team’s pitching staff to 4.0. Use the estimated regression

equation developed in part (c) to estimate the percentage of games San Diego will win

if they have 180 team home runs and have an earned run average of 4.0.

7. PC World rated four component characteristics for 10 ultraportable laptop computers: fea-

tures; performance; design; and price. Each characteristic was rated using a 0–100 point

scale. An overall rating, referred to as the PCW World Rating, was then developed for each

laptop. The following table shows the performance rating, features rating, and the PCW

World Rating for the 10 laptop computers (PC World website, February 5, 2009).

Model Performance Features PCW Rating

Thinkpad X200 77 87 83
VGN-Z598U 97 85 82
U6V 83 80 81
Elitebook 2530P 77 75 78
X360 64 80 78
Thinkpad X300 56 76 78
Ideapad U110 55 81 77
Micro Express JFT2500 76 73 75
Toughbook W7 46 79 73
HP Voodoo Envy133 54 68 72

Proportion Proportion
Team Won HR ERA Team Won HR ERA

Arizona .519 152 3.857 Milwaukee .420 196 5.058
Atlanta .623 235 4.106 Montreal .512 144 4.027
Chicago .543 172 3.842 New York .410 124 4.517
Cincinnati .426 182 5.127 Philadelphia .531 166 4.072
Colorado .457 198 5.269 Pittsburgh .463 163 4.664
Florida .562 157 4.059 San Diego .395 128 4.904
Houston .537 191 3.880 San Francisco .621 180 3.734
Los Angeles .525 124 3.162 St. Louis .525 196 4.642

fileWEB

MLB

fileWEB
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a. Develop an estimated regression equation that can be used to predict the price of the

car given the reliability rating. Test for significance using α � .05.

b. Consider the addition of the independent variable overall road-test score. Develop the

estimated regression equation that can be used to predict the price of the car given the

road-test score and the reliability rating.

c. Estimate the price for a car with a road-test score of 80 and a reliability rating of 4.

9. Waterskiing and wakeboarding are two popular water-sports. Finding a model that best

suits your intended needs, whether it is waterskiing, wakeboading, or general boating, can

be a difficult task. WaterSki magazine did extensive testing for 88 boats and provided a

wide variety of information to help consumers select the best boat. A portion of the data

they reported for 20 boats with a length of between 20 and 22 feet follows (WaterSki,

January/February 2006). Beam is the maximum width of the boat in inches, HP is the

horsepower of the boat’s engine, and TopSpeed is the top speed in miles per hour (mph).

a. Determine the estimated regression equation that can be used to predict the PCW

World Rating using the performance rating as the independent variable.

b. Determine the estimated regression equation that can be used to predict the PCW

World Rating using both the performance rating and the features rating.

c. Predict the PCW World Rating for a laptop computer that has a performance rating of

80 and a features rating of 70.

8. Would you expect more reliable and better performing cars to cost more? Consumer Re-

ports provided reliability ratings, overall road-test scores, and prices for affordable family

sedans, midpriced family sedans, and large sedans (Consumer Reports, February 2008). A

portion of the data follows. Reliability was rated on a 5-point scale from poor (1) to ex-

cellent (5). The road-test score was rated on a 100-point scale, with higher values indicat-

ing better performance. The complete data set is contained in the file named Sedans.

Make and Model Beam HP TopSpeed

Calabria Cal Air Pro V-2 100 330 45.3
Correct Craft Air Nautique 210 91 330 47.3
Correct Craft Air Nautique SV-211 93 375 46.9
Correct Craft Ski Nautique 206 Limited 91 330 46.7
Gekko GTR 22 96 375 50.1
Gekko GTS 20 83 375 52.2
Malibu Response LXi 93.5 340 47.2
Malibu Sunsettter LXi 98 400 46
Malibu Sunsetter 21 XTi 98 340 44

Make and Model Road-Test Score Reliability Price ($)

Nissan Altima 2.5 S 85 4 22705

Honda Accord LX-P 79 4 22795

Kia Optima EX (4-cyl.) 78 4 22795

Toyota Camry LE 77 4 21080

Hyundai Sonata SE 76 3 22995
. . . .
. . . .
. . . .

Chrysler 300 Touring 60 2 30255

Dodge Charger SXT 58 4 28860

fileWEB

Sedans
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a. Determine the estimated regression equation that can be used to predict the proportion

of games won given the proportion of field goals made by the team.

b. Provide an interpretation for the slope of the estimated regression equation developed

in part (a).

c. Determine the estimated regression equation that can be used to predict the proportion

of games won given the proportion of field goals made by the team, the proportion of

three-point shots made by the team’s opponent, and the number of turnovers commit-

ted by the team’s opponent.

d. Discuss the practical implications of the estimated regression equation developed in

part (c).

e. Estimate the proportion of games won for a team with the following values for the three

independent variables: FG% � .45, Opp 3 Pt% � .34, and Opp TO � 17.

Make and Model Beam HP TopSpeed

Malibu Sunscape 21 LSV 98 400 47.5
Malibu Wakesetter 21 XTi 98 340 44.9
Malibu Wakesetter VLX 98 400 47.3
Malibu vRide 93.5 340 44.5
Malibu Ride XTi 93.5 320 44.5
Mastercraft ProStar 209 96 350 42.5
Mastercraft X-1 90 310 45.8
Mastercraft X-2 94 310 42.8
Mastercraft X-9 96 350 43.2
MB Sports 190 Plus 92 330 45.3
Svfara SVONE 91 330 47.7

a. Using these data, develop an estimated regression equation relating the top speed with

the boat’s beam and horsepower rating.

b. The Svfara SV609 has a beam of 85 inches and an engine with a 330 horsepower rat-

ing. Use the estimated regression equation developed in part (a) to estimate the top

speed for the Svfara SV609.

10. The National Basketball Association (NBA) records a variety of statistics for each team.

Four of these statistics are the proportion of games won (PCT), the proportion of field goals

made by the team (FG%), the proportion of three-point shots made by the team’s opponent

(Opp 3 Pt%), and the number of turnovers committed by the team’s opponent (Opp TO).

The following data show the values of these statistics for the 29 teams in the NBA for a

portion of the 2004 season (NBA website, January 3, 2004).

Opp 3 Opp Opp 3 Opp
Team PCT FG% Pt% TO Team PCT FG% Pt% TO

Atlanta 0.265 0.435 0.346 13.206 Minnesota 0.677 0.473 0.348 13.839
Boston 0.471 0.449 0.369 16.176 New Jersey 0.563 0.435 0.338 17.063
Chicago 0.313 0.417 0.372 15.031 New Orleans 0.636 0.421 0.330 16.909
Cleveland 0.303 0.438 0.345 12.515 New York 0.412 0.442 0.330 13.588
Dallas 0.581 0.439 0.332 15.000 Orlando 0.242 0.417 0.360 14.242
Denver 0.606 0.431 0.366 17.818 Philadelphia 0.438 0.428 0.364 16.938
Detroit 0.606 0.423 0.262 15.788 Phoenix 0.364 0.438 0.326 16.515
Golden State 0.452 0.445 0.384 14.290 Portland 0.484 0.447 0.367 12.548
Houston 0.548 0.426 0.324 13.161 Sacramento 0.724 0.466 0.327 15.207
Indiana 0.706 0.428 0.317 15.647 San Antonio 0.688 0.429 0.293 15.344
L.A. Clippers 0.464 0.424 0.326 14.357 Seattle 0.533 0.436 0.350 16.767
L.A. Lakers 0.724 0.465 0.323 16.000 Toronto 0.516 0.424 0.314 14.129
Memphis 0.485 0.432 0.358 17.848 Utah 0.531 0.456 0.368 15.469
Miami 0.424 0.410 0.369 14.970 Washington 0.300 0.411 0.341 16.133
Milwaukee 0.500 0.438 0.349 14.750

fileWEB

NBA
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RELATIONSHIP AMONG SST, SSR, AND SSE

(15.7)

where

SST �

SSR �

SSE �

total sum of squares � �(
 
yi � ȳ)2

sum of squares due to regression � �(
 
ŷi � ȳ)2

sum of squares due to error � �(
 
yi � ŷi 

)2

SST � SSR � SSE

Because of the computational difficulty in computing the three sums of squares, we rely

on computer packages to determine those values. The analysis of variance part of the

Minitab output in Figure 15.4 shows the three values for the Butler Trucking problem with

two independent variables: SST � 23.900, SSR � 21.601, and SSE � 2.299. With only one

independent variable (number of miles traveled), the Minitab output in Figure 15.3 shows

that SST � 23.900, SSR � 15.871, and SSE � 8.029. The value of SST is the same in both

cases because it does not depend on , but SSR increases and SSE decreases when a second

independent variable (number of deliveries) is added. The implication is that the estimated

multiple regression equation provides a better fit for the observed data.

In Chapter 14, we used the coefficient of determination, r2
� SSR/SST, to measure the

goodness of fit for the estimated regression equation. The same concept applies to multiple

regression. The term multiple coefficient of determination indicates that we are measur-

ing the goodness of fit for the estimated multiple regression equation. The multiple coeffi-

cient of determination, denoted R2, is computed as follows.

ŷ

The multiple coefficient of determination can be interpreted as the proportion of the vari-

ability in the dependent variable that can be explained by the estimated multiple regression

equation. Hence, when multiplied by 100, it can be interpreted as the percentage of the vari-

ability in y that can be explained by the estimated regression equation.

In the two-independent-variable Butler Trucking example, with SSR � 21.601 and

SST � 23.900, we have

Therefore, 90.4% of the variability in travel time y is explained by the estimated multiple

regression equation with miles traveled and number of deliveries as the independent vari-

ables. In Figure 15.4, we see that the multiple coefficient of determination (expressed as a

percentage) is also provided by the Minitab output; it is denoted by R-sq � 90.4%.

R2
�

21.601

23.900
� .904

MULTIPLE COEFFICIENT OF DETERMINATION

(15.8)R2
�

SSR

SST

15.3 Multiple Coefficient of Determination

In simple linear regression we showed that the total sum of squares can be partitioned into

two components: the sum of squares due to regression and the sum of squares due to error.

The same procedure applies to the sum of squares in multiple regression.
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Exercises

Methods

11. In exercise 1, the following estimated regression equation based on 10 observations was

presented.

The values of SST and SSR are 6724.125 and 6216.375, respectively.

a. Find SSE.

b. Compute R2.

c. Compute .

d. Comment on the goodness of fit.

12. In exercise 2, 10 observations were provided for a dependent variable y and two indepen-

dent variables x1 and x2; for these data SST � 15,182.9, and SSR � 14,052.2.

a. Compute R2.

b. Compute .

c. Does the estimated regression equation explain a large amount of the variability in the

data? Explain.

R2
a

R2
a

ŷ � 29.1270 � .5906x1 � .4980x2

For the Butler Trucking example with n � 10 and p � 2, we have

Thus, after adjusting for the two independent variables, we have an adjusted multiple coef-

ficient of determination of .88. This value (expressed as a percentage) is provided by the

Minitab output in Figure 15.4 as R-sq(adj) � 87.6%; the value we calculated differs be-

cause we used a rounded value of R2 in the calculation.

R2
a � 1 � (1 � .904) 

10 � 1

10 � 2 � 1
� .88

testSELF

NOTES AND COMMENTS

If the value of R2 is small and the model contains a
large number of independent variables, the adjusted
coefficient of determination can take a negative

value; in such cases, Minitab sets the adjusted co-
efficient of determination to zero.

ADJUSTED MULTIPLE COEFFICIENT OF DETERMINATION

(15.9)R2
a � 1 � (1 � R2) 

n � 1

n � p � 1

If a variable is added to the

model, R2 becomes larger

even if the variable added

is not statistically

significant. The adjusted

multiple coefficient of

determination compensates

for the number of

independent variables in

the model.

Figure 15.3 shows that the R-sq value for the estimated regression equation with only

one independent variable, number of miles traveled (x1), is 66.4%. Thus, the percentage of

the variability in travel times that is explained by the estimated regression equation in-

creases from 66.4% to 90.4% when number of deliveries is added as a second independent

variable. In general, R2 always increases as independent variables are added to the model.

Many analysts prefer adjusting R2 for the number of independent variables to avoid 

overestimating the impact of adding an independent variable on the amount of variability 

explained by the estimated regression equation. With n denoting the number of observations

and p denoting the number of independent variables, the adjusted multiple coefficient of

determination is computed as follows.

Adding independent

variables causes the

prediction errors to become

smaller, thus reducing 

the sum of squares due to

error, SSE. Because SSR �

SST � SSE, when SSE

becomes smaller, SSR

becomes larger, causing 

R2
� SSR/SST to increase.
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13. In exercise 3, the following estimated regression equation based on 30 observations was

presented.

The values of SST and SSR are 1805 and 1760, respectively.

a. Compute R2.

b. Compute .

c. Comment on the goodness of fit.

Applications

14. In exercise 4, the following estimated regression equation relating sales to inventory in-

vestment and advertising expenditures was given.

The data used to develop the model came from a survey of 10 stores; for those data,

SST � 16,000 and SSR � 12,000.

a. For the estimated regression equation given, compute R2.

b. Compute .

c. Does the model appear to explain a large amount of variability in the data? Explain.

15. In exercise 5, the owner of Showtime Movie Theaters, Inc., used multiple regression analy-

sis to predict gross revenue ( y) as a function of television advertising (x1) and newspaper

advertising (x2). The estimated regression equation was

The computer solution provided SST � 25.5 and SSR � 23.435.

a. Compute and interpret R2 and      .

b. When television advertising was the only independent variable, R2
� .653 and �

.595. Do you prefer the multiple regression results? Explain.

16. In exercise 6, data were given on the proportion of games won, the number of team home runs,

and the earned run average for the team’s pitching staff for the 16 teams in the National League

for the 2003 Major League Baseball season (USA Today website, January 7, 2004).

a. Did the estimated regression equation that uses only the number of home runs as the in-

dependent variable to predict the proportion of games won provide a good fit? Explain.

b. Discuss the benefits of using both the number of home runs and the earned run aver-

age to predict the proportion of games won.

17. In exercise 9, an estimated regression equation was developed relating the top speed for a

boat to the boat’s beam and horsepower rating.

a. Compute and interpret and R2 and .

b. Does the estimated regression equation provide a good fit to the data? Explain.

18. Refer to exercise 10, where data were reported on a variety of statistics for the 29 teams

in the National Basketball Association for a portion of the 2004 season (NBA website,

January 3, 2004).

a. In part (c) of exercise 10, an estimated regression equation was developed relating the

proportion of games won given the percentage of field goals made by the team, the

proportion of three-point shots made by the team’s opponent, and the number of turn-

overs committed by the team’s opponent. What are the values of R2 and ?

b. Does the estimated regression equation provide a good fit to the data? Explain.

R2
a

R2
a

R2
a

ŷ � 83.2 � 2.29x1 � 1.30x2

R2
a

ŷ � 25 � 10x1 � 8x2

R2
a

ŷ � 17.6 � 3.8x1 � 2.3x2 � 7.6x3 � 2.7x4

testSELF

fileWEB

Showtime

fileWEB

MLB

fileWEB

Boats

fileWEB

NBA

R2
a
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To obtain more insight about the form of the relationship given by equation (15.11),

consider the following two-independent-variable multiple regression equation.

The graph of this equation is a plane in three-dimensional space. Figure 15.5 provides an

example of such a graph. Note that the value of � shown is the difference between the ac-

tual y value and the expected value of y, E( y), when and x2 � x*2 .x1 � x*1

E(
 
y) � �0 � �1x1 � �2 

x2

ASSUMPTIONS ABOUT THE ERROR TERM � IN THE MULTIPLE REGRESSION

MODEL y � �0 � �1x1 � . . . � �pxp � �

1. The error term � is a random variable with mean or expected value of zero;

that is, E(�) � 0.

Implication: For given values of x1, x2, . . . , xp, the expected, or average, value

of y is given by

(15.11)

Equation (15.11) is the multiple regression equation we introduced in Sec-

tion 15.1. In this equation, E( y) represents the average of all possible values

of y that might occur for the given values of x1, x2, . . . , xp.

2. The variance of � is denoted by σ 2 and is the same for all values of the inde-

pendent variables x1, x2, . . . , xp.

Implication: The variance of y about the regression line equals σ 2 and is the

same for all values of x1, x2, . . . , xp.

3. The values of � are independent.

Implication: The value of � for a particular set of values for the independent

variables is not related to the value of � for any other set of values.

4. The error term � is a normally distributed random variable reflecting the

deviation between the y value and the expected value of y given by

�0 � �1x1 � �2x2 � . . . � �pxp.

Implication: Because �0, �1, . . . , �p are constants for the given values of x1,

x2, . . . , xp, the dependent variable y is also a normally distributed random

variable.

E(
 
y) � �0 � �1x1 � �2 

x2 � . . . � �p 
xp

MULTIPLE REGRESSION MODEL

(15.10)y � �0 � �1x1 � �2 
x2 � . . . � �p 

xp � �

15.4 Model Assumptions

In Section 15.1 we introduced the following multiple regression model.

The assumptions about the error term � in the multiple regression model parallel those for

the simple linear regression model.
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In regression analysis, the term response variable is often used in place of the term de-

pendent variable. Furthermore, since the multiple regression equation generates a plane or

surface, its graph is called a response surface.

15.5 Testing for Significance

In this section we show how to conduct significance tests for a multiple regression rela-

tionship. The significance tests we used in simple linear regression were a t test and an F

test. In simple linear regression, both tests provide the same conclusion; that is, if the null

hypothesis is rejected, we conclude that �1 � 0. In multiple regression, the t test and the F

test have different purposes.

1. The F test is used to determine whether a significant relationship exists between the

dependent variable and the set of all the independent variables; we will refer to the

F test as the test for overall significance.

2. If the F test shows an overall significance, the t test is used to determine whether

each of the individual independent variables is significant. A separate t test is con-

ducted for each of the independent variables in the model; we refer to each of these

t tests as a test for individual significance.

In the material that follows, we will explain the F test and the t test and apply each to the

Butler Trucking Company example.

F Test

The multiple regression model as defined in Section 15.4 is

The hypotheses for the F test involve the parameters of the multiple regression model.

H0:

Ha:
 
�1 � �2 � . . . � �p � 0

One or more of the parameters is not equal to zero

y � �0 � �1x1 � �2 
x2 � . . . � �p 

xp � �

Value of y when

x1 = x1 and x2 = x2
**

E(y) when

x1 = x1 and x2 = x2
* *    Plane corresponding

to E(y) = 0 +   1x1 + ββ 2x2 β

0β

x1
*

x2
*

x2

x1

(x1, x2)
**

Point corresponding to

x1 = x1 and x2 = x2
**

y

�

FIGURE 15.5 GRAPH OF THE REGRESSION EQUATION FOR MULTIPLE REGRESSION

ANALYSIS WITH TWO INDEPENDENT VARIABLES
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If H0 is rejected, the test gives us sufficient statistical evidence to conclude that one or more

of the parameters is not equal to zero and that the overall relationship between y and the set

of independent variables x1, x2, . . . , xp is significant. However, if H0 cannot be rejected, we

do not have sufficient evidence to conclude that a significant relationship is present.

Before describing the steps of the F test, we need to review the concept of mean square.

A mean square is a sum of squares divided by its corresponding degrees of freedom. In the

multiple regression case, the total sum of squares has n � 1 degrees of freedom, the sum of

squares due to regression (SSR) has p degrees of freedom, and the sum of squares due to 

error has n � p � 1 degrees of freedom. Hence, the mean square due to regression (MSR)

is SSR/p and the mean square due to error (MSE) is SSE /(n � p � 1).

(15.12)

and

(15.13)

As discussed in Chapter 14, MSE provides an unbiased estimate of σ 2, the variance of the

error term �. If H0: �1 � �2 � . . . � �p � 0 is true, MSR also provides an unbiased estimate

of σ 2, and the value of MSR/MSE should be close to 1. However, if H0 is false, MSR over-

estimates σ 2 and the value of MSR/MSE becomes larger. To determine how large the value

of MSR/MSE must be to reject H0, we make use of the fact that if H0 is true and the as-

sumptions about the multiple regression model are valid, the sampling distribution of

MSR/MSE is an F distribution with p degrees of freedom in the numerator and n � p � 1

in the denominator. A summary of the F test for significance in multiple regression follows.

MSE �
SSE

n � p � 1

MSR �
SSR

p

F TEST FOR OVERALL SIGNIFICANCE

TEST STATISTIC

(15.14)

REJECTION RULE

where Fα is based on an F distribution with p degrees of freedom in the numerator

and n � p � 1 degrees of freedom in the denominator.

p-value approach:

Critical value approach:
  

Reject H0 if p-value � α

Reject H0 if F � Fα

F �
MSR

MSE

H0:

Ha:
 
�1 � �2 � . . . � �p � 0

One or more of the parameters is not equal to zero

Let us apply the F test to the Butler Trucking Company multiple regression problem.

With two independent variables, the hypotheses are written as follows.

H0:

Ha:
 
�1 � �2 � 0

�1 and/or �2 is not equal to zero
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Figure 15.6 is the Minitab output for the multiple regression model with miles traveled (x1)

and number of deliveries (x2) as the two independent variables. In the analysis of variance

part of the output, we see that MSR � 10.8 and MSE � .328. Using equation (15.14), we

obtain the test statistic.

Note that the F value on the Minitab output is F � 32.88; the value we calculated differs

because we used rounded values for MSR and MSE in the calculation. Using α � .01, the

p-value � 0.000 in the last column of the analysis of variance table (Figure 15.6) indicates

that we can reject H0: �1 � �2 � 0 because the p-value is less than α � .01. Alternatively,

Table 4 of Appendix B shows that with two degrees of freedom in the numerator and seven

degrees of freedom in the denominator, F.01 � 9.55. With 32.9 	 9.55, we reject H0: �1 �

�2 � 0 and conclude that a significant relationship is present between travel time y and the

two independent variables, miles traveled and number of deliveries.

As noted previously, the mean square error provides an unbiased estimate of σ 2, the

variance of the error term �. Referring to Figure 15.6, we see that the estimate of σ 2 is

MSE � .328. The square root of MSE is the estimate of the standard deviation of the error

term. As defined in Section 14.5, this standard deviation is called the standard error of the

estimate and is denoted s. Hence, we have Note that the value

of the standard error of the estimate appears in the Minitab output in Figure 15.6.

Table 15.3 is the general analysis of variance (ANOVA) table that provides the F test re-

sults for a multiple regression model. The value of the F test statistic appears in the last col-

umn and can be compared to Fα with p degrees of freedom in the numerator and n � p � 1

degrees of freedom in the denominator to make the hypothesis test conclusion. By review-

ing the Minitab output for Butler Trucking Company in Figure 15.6, we see that Minitab’s

analysis of variance table contains this information. Moreover, Minitab also provides the 

p-value corresponding to the F test statistic.

s � �MSE � �.328 � .573.

F �
10.8

.328
� 32.9

The regression equation is

Time = - 0.869 + 0.0611 Miles + 0.923 Deliveries

Predictor       Coef   SE Coef      T      p

Constant     –0.8687    0.9515  –0.91  0.392

Miles       0.061135  0.009888   6.18  0.000

Deliveries    0.9234    0.2211   4.18  0.004

S = 0.573142   R–sq = 90.4%   R–sq(adj) = 87.6%

Analysis of Variance

SOURCE          DF      SS      MS      F      p

Regression       2  21.601  10.800  32.88  0.000

Residual Error   7   2.299   0.328

Total            9  23.900

FIGURE 15.6 MINITAB OUTPUT FOR BUTLER TRUCKING WITH TWO INDEPENDENT

VARIABLES, MILES TRAVELED (x1) AND NUMBER OF DELIVERIES (x2)
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t Test

If the F test shows that the multiple regression relationship is significant, a t test can be con-

ducted to determine the significance of each of the individual parameters. The t test for in-

dividual significance follows.

In the test statistic, is the estimate of the standard deviation of bi. The value of will be

provided by the computer software package.

Let us conduct the t test for the Butler Trucking regression problem. Refer to the sec-

tion of Figure 15.6 that shows the Minitab output for the t-ratio calculations. Values of b1,

b2, and are as follows.

Using equation (15.15), we obtain the test statistic for the hypotheses involving parameters

�1 and �2.

t � .061135/.009888 � 6.18

t � .9234/.2211 � 4.18

b1 � .061135

b2 � .9234

sb1
� .009888

sb2
� .2211

sb2
sb1

,

sbi
sbi

Sum Degrees
Source of Squares of Freedom Mean Square F

Regression SSR p

Error SSE

Total SST n � 1

MSE �
SSE

n � p � 1
n � p � 1

F �
MSR

MSE
MSR �

SSR

p

TABLE 15.3 ANOVA TABLE FOR A MULTIPLE REGRESSION MODEL WITH p

INDEPENDENT VARIABLES

t TEST FOR INDIVIDUAL SIGNIFICANCE

For any parameter �i

TEST STATISTIC

(15.15)

REJECTION RULE

where tα/2 is based on a t distribution with n � p � 1 degrees of freedom.

p-value approach:

Critical value approach:
  

Reject H0 if p-value � α

Reject H0 if t � �tα/2 or if t � tα/2

t �
bi

sbi

H0:

Ha:
 
�i � 0

�i � 0
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Note that both of these t-ratio values and the corresponding p-values are provided by the

Minitab output in Figure 15.6. Using α � .01, the p-values of .000 and .004 on the Minitab

output indicate that we can reject H0: �1 � 0 and H0: �2 � 0. Hence, both parameters are

statistically significant. Alternatively, Table 2 of Appendix B shows that with n � p � 1 �

10 � 2 � 1 � 7 degrees of freedom, t.005 � 3.499. With 6.18 	 3.499, we reject H0: �1 � 0.

Similarly, with 4.18 	 3.499, we reject H0: �2 � 0.

Multicollinearity

We use the term independent variable in regression analysis to refer to any variable being

used to predict or explain the value of the dependent variable. The term does not mean, how-

ever, that the independent variables themselves are independent in any statistical sense. On

the contrary, most independent variables in a multiple regression problem are correlated to

some degree with one another. For example, in the Butler Trucking example involving the

two independent variables x1 (miles traveled) and x2 (number of deliveries), we could treat

the miles traveled as the dependent variable and the number of deliveries as the indepen-

dent variable to determine whether those two variables are themselves related. We could

then compute the sample correlation coefficient to determine the extent to which the rx1x2

variables are related. Doing so yields � .16. Thus, we find some degree of linear associa-

tion between the two independent variables. In multiple regression analysis, multicollinearity

refers to the correlation among the independent variables.

To provide a better perspective of the potential problems of multicollinearity, let us con-

sider a modification of the Butler Trucking example. Instead of x2 being the number of de-

liveries, let x2 denote the number of gallons of gasoline consumed. Clearly, x1 (the miles

traveled) and x2 are related; that is, we know that the number of gallons of gasoline used

depends on the number of miles traveled. Hence, we would conclude logically that x1 and

x2 are highly correlated independent variables.

Assume that we obtain the equation � b0 � b1x1 � b2x2 and find that the F test shows

the relationship to be significant. Then suppose we conduct a t test on �1 to determine

whether �1 � 0, and we cannot reject H0: �1 � 0. Does this result mean that travel time is

not related to miles traveled? Not necessarily. What it probably means is that with x2 already

in the model, x1 does not make a significant contribution to determining the value of y. This

interpretation makes sense in our example; if we know the amount of gasoline consumed,

we do not gain much additional information useful in predicting y by knowing the miles

traveled. Similarly, a t test might lead us to conclude �2 � 0 on the grounds that, with x1 in

the model, knowledge of the amount of gasoline consumed does not add much.

To summarize, in t tests for the significance of individual parameters, the difficulty

caused by multicollinearity is that it is possible to conclude that none of the individual pa-

rameters are significantly different from zero when an F test on the overall multiple re-

gression equation indicates a significant relationship. This problem is avoided when there

is little correlation among the independent variables.

Statisticians have developed several tests for determining whether multicollinearity is

high enough to cause problems. According to the rule of thumb test, multicollinearity is a

potential problem if the absolute value of the sample correlation coefficient exceeds .7 for

any two of the independent variables. The other types of tests are more advanced and be-

yond the scope of this text.

If possible, every attempt should be made to avoid including independent variables that

are highly correlated. In practice, however, strict adherence to this policy is rarely possible.

When decision makers have reason to believe substantial multicollinearity is present, they

must realize that separating the effects of the individual independent variables on the de-

pendent variable is difficult.

ŷ

rx1x2

A sample correlation

coefficient greater than �.7

or less than �.7 for two

independent variables is a

rule of thumb warning of

potential problems with

multicollinearity.

When the independent

variables are highly

correlated, it is not possible

to determine the separate

effect of any particular

independent variable on the

dependent variable.
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Exercises

Methods

19. In exercise 1, the following estimated regression equation based on 10 observations was

presented.

Here SST � 6724.125, SSR � 6216.375, � .0813, and � .0567.

a. Compute MSR and MSE.

b. Compute F and perform the appropriate F test. Use α � .05.

c. Perform a t test for the significance of �1. Use α � .05.

d. Perform a t test for the significance of �2. Use α � .05.

20. Refer to the data presented in exercise 2. The estimated regression equation for these data is

Here SST � 15,182.9, SSR � 14,052.2, � .2471, and � .9484.sb2
sb1

ŷ � �18.37 � 2.01x1 � 4.74x2

sb2
sb1

ŷ � 29.1270 � .5906x1 � .4980x2

testSELF

NOTES AND COMMENTS

Ordinarily, multicollinearity does not affect the
way in which we perform our regression analysis or
interpret the output from a study. However, when
multicollinearity is severe—that is, when two or
more of the independent variables are highly corre-
lated with one another—we can have difficulty in-
terpreting the results of t tests on the individual
parameters. In addition to the type of problem il-
lustrated in this section, severe cases of multi-
collinearity have been shown to result in least
squares estimates that have the wrong sign. That is,

in simulated studies where researchers created the
underlying regression model and then applied the
least squares technique to develop estimates of �0,
�1, �2, and so on, it has been shown that under con-
ditions of high multicollinearity the least squares
estimates can have a sign opposite that of the para-
meter being estimated. For example, b2 might actu-
ally be �10 and �2, its estimate, might turn out to
be �2. Thus, little faith can be placed in the indi-
vidual coefficients if multicollinearity is present to
a high degree.

a. Test for a significant relationship among x1, x2, and y. Use α � .05.

b. Is �1 significant? Use α � .05.

c. Is �2 significant? Use α � .05.

21. The following estimated regression equation was developed for a model involving two in-

dependent variables.

After x2 was dropped from the model, the least squares method was used to obtain an es-

timated regression equation involving only x1 as an independent variable.

a. Give an interpretation of the coefficient of x1 in both models.

b. Could multicollinearity explain why the coefficient of x1 differs in the two models? If

so, how?

ŷ � 42.0 � 9.01x1

ŷ � 40.7 � 8.63x1 � 2.71x2
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Applications

22. In exercise 4, the following estimated regression equation relating sales to inventory in-

vestment and advertising expenditures was given.

The data used to develop the model came from a survey of 10 stores; for these data

SST � 16,000 and SSR � 12,000.

a. Compute SSE, MSE, and MSR.

b. Use an F test and a .05 level of significance to determine whether there is a relation-

ship among the variables.

23. Refer to exercise 5.

a. Use α � .01 to test the hypotheses

for the model y � �0 � �1x1 � �2x2 � �, where

b. Use α � .05 to test the significance of �1. Should x1 be dropped from the model?

c. Use α � .05 to test the significance of �2. Should x2 be dropped from the model?

24. The Wall Street Journal conducted a study of basketball spending at top colleges. A por-

tion of the data showing the revenue ($ millions), percentage of wins, and the coach’s

salary ($ millions) for 39 of the country’s top basketball programs follows (The Wall Street

Journal, March 11–12, 2006).

x1 �

x2 �

television advertising ($1000s)

newspaper advertising ($1000s)

H0:

Ha:
 
�1 � �2 � 0

�1 and/or �2 is not equal to zero

ŷ � 25 � 10x1 � 8x2

testSELF

School Revenue %Wins Salary

Alabama 6.5 61 1.00

Arizona 16.6 63 0.70

Arkansas 11.1 72 0.80

Boston College 3.4 80 0.53

. . . .

. . . .

. . . .

Washington 5.0 83 0.89

West Virginia 4.9 67 0.70

Wichita State 3.1 75 0.41

Wisconsin 12.0 66 0.70
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a. Develop the estimated regression equation that can be used to predict the coach’s

salary given the revenue generated by the program and the percentage of wins.

b. Use the F test to determine the overall significance of the relationship. What is your

conclusion at the .05 level of significance?

c. Use the t test to determine the significance of each independent variable. What is your

conclusion at the .05 level of significance?

25. Barron’s conducts an annual review of online brokers, including both brokers who can be 

accessed via a Web browser, as well as direct-access brokers who connect customers directly

with the broker’s network server. Each broker’s offerings and performance are evaluated in six

areas, using a point value of 0–5 in each category. The results are weighted to obtain an over-

all score, and a final star rating, ranging from zero to five stars, is assigned to each broker. Trade
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execution, ease of use, and range of offerings are three of the areas evaluated. A point value of

5 in the trade execution area means the order entry and execution process flowed easily from

one step to the next. A value of 5 in the ease of use area means that the site was easy to use and

can be tailored to show what the user wants to see. Avalue of 5 in the range offerings area means

that all the investment transactions can be executed online. The following data show the point

values for trade execution, ease of use, range of offerings, and the star rating for a sample of 10

of the online brokers that Barron’s evaluated (Barron’s, March 10, 2003).

a. Determine the estimated regression equation that can be used to predict the star rating

given the point values for execution, ease of use, and range of offerings.

b. Use the F test to determine the overall significance of the relationship. What is the con-

clusion at the .05 level of significance?

c. Use the t test to determine the significance of each independent variable. What is your

conclusion at the .05 level of significance?

d. Remove any independent variable that is not significant from the estimated regression

equation. What is your recommended estimated regression equation? Compare the R2

with the value of R2 from part (a). Discuss the differences.

26. In exercise 10 an estimated regression equation was developed relating the proportion of games

won given the proportion of field goals made by the team, the proportion of three-point shots

made by the team’s opponent, and the number of turnovers committed by the team’s opponent.

a. Use the F test to determine the overall significance of the relationship. What is your

conclusion at the .05 level of significance?

b. Use the t test to determine the significance of each independent variable. What is your

conclusion at the .05 level of significance?

15.6 Using the Estimated Regression Equation 
for Estimation and Prediction

The procedures for estimating the mean value of y and predicting an individual value of y

in multiple regression are similar to those in regression analysis involving one independent

variable. First, recall that in Chapter 14 we showed that the point estimate of the expected

value of y for a given value of x was the same as the point estimate of an individual value

of y. In both cases, we used � b0 � b1x as the point estimate.

In multiple regression we use the same procedure. That is, we substitute the given val-

ues of x1, x2, . . . , xp into the estimated regression equation and use the corresponding value

of as the point estimate. Suppose that for the Butler Trucking example we want to use theŷ

ŷ

Trade
Broker Execution Use Range Rating

Wall St. Access 3.7 4.5 4.8 4.0
E*TRADE (Power) 3.4 3.0 4.2 3.5
E*TRADE (Standard) 2.5 4.0 4.0 3.5
Preferred Trade 4.8 3.7 3.4 3.5
my Track 4.0 3.5 3.2 3.5
TD Waterhouse 3.0 3.0 4.6 3.5
Brown & Co. 2.7 2.5 3.3 3.0
Brokerage America 1.7 3.5 3.1 3.0
Merrill Lynch Direct 2.2 2.7 3.0 2.5
Strong Funds 1.4 3.6 2.5 2.0
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estimated regression equation involving x1 (miles traveled) and x2 (number of deliveries) to

develop two interval estimates:

1. A confidence interval of the mean travel time for all trucks that travel 100 miles and

make two deliveries

2. A prediction interval of the travel time for one specific truck that travels 100 miles

and makes two deliveries

Using the estimated regression equation � �.869 � .0611x1 � .923x2 with x1 � 100 and

x2 � 2, we obtain the following value of .

Hence, the point estimate of travel time in both cases is approximately seven hours.

To develop interval estimates for the mean value of y and for an individual value of y,

we use a procedure similar to that for regression analysis involving one independent vari-

able. The formulas required are beyond the scope of the text, but computer packages for

multiple regression analysis will often provide confidence intervals once the values of x1,

x2, . . . , xp are specified by the user. In Table 15.4 we show the 95% confidence and predic-

tion intervals for the Butler Trucking example for selected values of x1 and x2; these values

were obtained using Minitab. Note that the interval estimate for an individual value of y is

wider than the interval estimate for the expected value of y. This difference simply reflects

the fact that for given values of x1 and x2 we can estimate the mean travel time for all trucks

with more precision than we can predict the travel time for one specific truck.

Exercises

Methods

27. In exercise 1, the following estimated regression equation based on 10 observations was

presented.

a. Develop a point estimate of the mean value of y when x1 � 180 and x2 � 310.

b. Develop a point estimate for an individual value of y when x1 � 180 and x2 � 310.

28. Refer to the data in exercise 2. The estimated regression equation for those data is

ŷ � �18.4 � 2.01x1 � 4.74x2

ŷ � 29.1270 � .5906x1 � .4980x2

ŷ � � .869 � .0611(100) � .923(2) � 7.09

ŷ

ŷ

Value of Value of Confidence Interval Prediction Interval

x1 x2 Lower Limit Upper Limit Lower Limit Upper Limit

50 2 3.146 4.924 2.414 5.656

50 3 4.127 5.789 3.368 6.548

50 4 4.815 6.948 4.157 7.607

100 2 6.258 7.926 5.500 8.683

100 3 7.385 8.645 6.520 9.510

100 4 8.135 9.742 7.362 10.515

TABLE 15.4 THE 95% CONFIDENCE AND PREDICTION INTERVALS 

FOR BUTLER TRUCKING

testSELF
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a. Develop a 95% confidence interval for the mean value of y when x1 � 45 and x2 � 15.

b. Develop a 95% prediction interval for y when x1 � 45 and x2 � 15.

Applications

29. In exercise 5, the owner of Showtime Movie Theaters, Inc., used multiple regression analy-

sis to predict gross revenue ( y) as a function of television advertising (x1) and newspaper

advertising (x2). The estimated regression equation was

a. What is the gross revenue expected for a week when $3500 is spent on television ad-

vertising (x1 � 3.5) and $1800 is spent on newspaper advertising (x2 � 1.8)?

b. Provide a 95% confidence interval for the mean revenue of all weeks with the expen-

ditures listed in part (a).

c. Provide a 95% prediction interval for next week’s revenue, assuming that the adver-

tising expenditures will be allocated as in part (a).

30. In exercise 9 an estimated regression equation was developed relating the top speed for a

boat to the boat’s beam and horsepower rating.

a. Develop a 95% confidence interval for the mean top speed of a boat with a beam of

85 inches and an engine with a 330 horsepower rating. 

b. The Svfara SV609 has a beam of 85 inches and an engine with a 330 horsepower rat-

ing. Develop a 95% confidence interval for the mean top speed for the Svfara SV609. 

31. The Buyer’s Guide section of the Web site for Car and Driver magazine provides reviews

and road tests for cars, trucks, SUVs, and vans. The average ratings of overall quality, vehi-

cle styling, braking, handling, fuel economy, interior comfort, acceleration, dependability,

fit and finish, transmission, and ride are summarized for each vehicle using a scale rang-

ing from 1 (worst) to 10 (best). A portion of the data for 14 Sports/GT cars is shown here

(Car and Driver website, January 7, 2004).

ŷ � 83.2 � 2.29x1 � 1.30x2

testSELF

Sports/GT Overall Handling Dependability Fit and Finish

Acura 3.2CL 7.80 7.83 8.17 7.67
Acura RSX 9.02 9.46 9.35 8.97
Audi TT 9.00 9.58 8.74 9.38
BMW 3-Series/M3 8.39 9.52 8.39 8.55
Chevrolet Corvette 8.82 9.64 8.54 7.87
Ford Mustang 8.34 8.85 8.70 7.34
Honda Civic Si 8.92 9.31 9.50 7.93
Infiniti G35 8.70 9.34 8.96 8.07
Mazda RX-8 8.58 9.79 8.96 8.12
Mini Cooper 8.76 10.00 8.69 8.33
Mitsubishi Eclipse 8.17 8.95 8.25 7.36
Nissan 350Z 8.07 9.35 7.56 8.21
Porsche 911 9.55 9.91 8.86 9.55
Toyota Celica 8.77 9.29 9.04 7.97

a. Develop an estimated regression equation using handling, dependability, and fit and

finish to predict overall quality.

b. Another Sports/GT car rated by Car and Driver is the Honda Accord. The ratings for

handling, dependability, and fit and finish for the Honda Accord were 8.28, 9.06, and

8.07, respectively. Estimate the overall rating for this car.

c. Provide a 95% confidence interval for overall quality for all sports and GT cars with

the characteristics listed in part (b).
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d. Provide a 95% prediction interval for overall quality for the Honda Accord described

in part (b).

e. The overall rating reported by Car and Driver for the Honda Accord was 8.65. How does

this rating compare to the estimates you developed in parts (b) and (d)?

15.7 Categorical Independent Variables

Thus far, the examples we have considered involved quantitative independent variables

such as student population, distance traveled, and number of deliveries. In many situations,

however, we must work with categorical independent variables such as gender (male,

female), method of payment (cash, credit card, check), and so on. The purpose of this sec-

tion is to show how categorical variables are handled in regression analysis. To illustrate

the use and interpretation of a categorical independent variable, we will consider a problem

facing the managers of Johnson Filtration, Inc.

An Example: Johnson Filtration, Inc.

Johnson Filtration, Inc., provides maintenance service for water-filtration systems through-

out southern Florida. Customers contact Johnson with requests for maintenance service on

their water-filtration systems. To estimate the service time and the service cost, Johnson’s

managers want to predict the repair time necessary for each maintenance request. Hence, re-

pair time in hours is the dependent variable. Repair time is believed to be related to two fac-

tors, the number of months since the last maintenance service and the type of repair problem

(mechanical or electrical). Data for a sample of 10 service calls are reported in Table 15.5.

Let y denote the repair time in hours and x1 denote the number of months since the last

maintenance service. The regression model that uses only x1 to predict y is

Using Minitab to develop the estimated regression equation, we obtained the output shown

in Figure 15.7. The estimated regression equation is

(15.16)

At the .05 level of significance, the p-value of .016 for the t (or F) test indicates that the

number of months since the last service is significantly related to repair time. R-sq � 53.4%

indicates that x1 alone explains 53.4% of the variability in repair time.

ŷ � 2.15 � .304x1

y � �0 � �1x1 � �

Service Months Since Repair Time
Call Last Service Type of Repair in Hours

1 2 electrical 2.9

2 6 mechanical 3.0

3 8 electrical 4.8

4 3 mechanical 1.8

5 2 electrical 2.9

6 7 electrical 4.9

7 9 mechanical 4.2

8 8 mechanical 4.8

9 4 electrical 4.4

10 6 electrical 4.5

TABLE 15.5 DATA FOR THE JOHNSON FILTRATION EXAMPLE

The independent variables

may be categorical or

quantitative.
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To incorporate the type of repair into the regression model, we define the following variable.

In regression analysis x2 is called a dummy or indicator variable. Using this dummy vari-

able, we can write the multiple regression model as

Table 15.6 is the revised data set that includes the values of the dummy variable. Using

Minitab and the data in Table 15.6, we can develop estimates of the model parameters. The

Minitab output in Figure 15.8 shows that the estimated multiple regression equation is

(15.17)ŷ � .93 � .388x1 � 1.26x2

y � �0 � �1x1 � �2 
x2 � �

x2 � �0 if the type of repair is mechanical

1 if the type of repair is electrical

The regression equation is

Time = 2.15 + 0.304 Months

Predictor    Coef  SE Coef     T      p

Constant   2.1473   0.6050  3.55  0.008

Months     0.3041   0.1004  3.03  0.016

S = 0.781022   R-sq = 53.4%   R-sq(adj) = 47.6%

Analysis of Variance

SOURCE          DF       SS      MS     F      p

Regression       1   5.5960  5.5960  9.17  0.016

Residual Error   8   4.8800  0.6100

Total            9  10.4760

FIGURE 15.7 MINITAB OUTPUT FOR JOHNSON FILTRATION WITH MONTHS

SINCE LAST SERVICE (x1) AS THE INDEPENDENT VARIABLE

In the Minitab output the

variable names Months and

Time were entered as the

column headings on the

worksheet; thus, x1 �

Months and y � Time.

Months Since Type of Repair Time
Customer Last Service (x1) Repair (x2) in Hours ( y)

1 2 1 2.9

2 6 0 3.0

3 8 1 4.8

4 3 0 1.8

5 2 1 2.9

6 7 1 4.9

7 9 0 4.2

8 8 0 4.8

9 4 1 4.4

10 6 1 4.5

TABLE 15.6 DATA FOR THE JOHNSON FILTRATION EXAMPLE WITH TYPE OF REPAIR

INDICATED BY A DUMMY VARIABLE (x2 � 0 FOR MECHANICAL; x2 � 1

FOR ELECTRICAL)
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At the .05 level of significance, the p-value of .001 associated with the F test (F � 21.36)

indicates that the regression relationship is significant. The t test part of the printout in

Figure 15.8 shows that both months since last service ( p-value � .000) and type of repair

( p-value � .005) are statistically significant. In addition, R-sq � 85.9% and R-sq(adj) �

81.9% indicate that the estimated regression equation does a good job of explaining the vari-

ability in repair times. Thus, equation (15.17) should prove helpful in estimating the repair

time necessary for the various service calls.

Interpreting the Parameters

The multiple regression equation for the Johnson Filtration example is

(15.18)

To understand how to interpret the parameters �0, �1, and �2 when a categorical variable is

present, consider the case when x2 � 0 (mechanical repair). Using E( y � mechanical) to de-

note the mean or expected value of repair time given a mechanical repair, we have

(15.19)

Similarly, for an electrical repair (x2 � 1), we have

(15.20)

Comparing equations (15.19) and (15.20), we see that the mean repair time is a linear func-

tion of x1 for both mechanical and electrical repairs. The slope of both equations is �1, but

the y-intercept differs. The y-intercept is �0 in equation (15.19) for mechanical repairs and

( �0 � �2) in equation (15.20) for electrical repairs. The interpretation of �2 is that it indi-

E( y 
 electrical)

 

� �0 � �1x1 � �2(1) � �0 � �1x1 � �2

� ( �0 � �2) � �1x1

E( y 
 mechanical) � �0 � �1x1 � �2(0) � �0 � �1x1

E( y) � �0 � �1x1 � �2 
x2

The regression equation is

Time = 0.930 + 0.388 Months + 1.26 Type

Predictor     Coef  SE Coef     T      p

Constant    0.9305   0.4670  1.99  0.087

Months     0.38762  0.06257  6.20  0.000

Type        1.2627   0.3141  4.02  0.005

S = 0.459048   R-sq = 85.9%   R-sq(adj) = 81.9%

Analysis of Variance

SOURCE          DF       SS      MS      F      p

Regression       2   9.0009  4.5005  21.36  0.001

Residual Error   7   1.4751  0.2107

Total            9  10.4760

FIGURE 15.8 MINITAB OUTPUT FOR JOHNSON FILTRATION WITH MONTHS

SINCE LAST SERVICE (x1) AND TYPE OF REPAIR (x2) AS THE

INDEPENDENT VARIABLES

In the Minitab output the

variable names Months,

Type, and Time were

entered as the column

headings on the worksheet;

thus, x1 � Months,

x2 � Type, and y � Time.

cates the difference between the mean repair time for an electrical repair and the mean re-

pair time for a mechanical repair.
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If �2 is positive, the mean repair time for an electrical repair will be greater than that

for a mechanical repair; if �2 is negative, the mean repair time for an electrical repair will

be less than that for a mechanical repair. Finally, if �2 � 0, there is no difference in the mean

repair time between electrical and mechanical repairs and the type of repair is not related

to the repair time.

Using the estimated multiple regression equation � .93 � .388x1 � 1.26x2, we see

that .93 is the estimate of �0 and 1.26 is the estimate of �2. Thus, when x2 � 0 (mechanical

repair)

(15.21)

and when x2 � 1 (electrical repair)

(15.22)

In effect, the use of a dummy variable for type of repair provides two estimated regression

equations that can be used to predict the repair time, one corresponding to mechanical re-

pairs and one corresponding to electrical repairs. In addition, with b2 � 1.26, we learn that,

on average, electrical repairs require 1.26 hours longer than mechanical repairs.

Figure 15.9 is the plot of the Johnson data from Table 15.6. Repair time in hours ( y) is

represented by the vertical axis and months since last service (x1) is represented by the hori-

zontal axis. A data point for a mechanical repair is indicated by an M and a data point for

an electrical repair is indicated by an E. Equations (15.21) and (15.22) are plotted on the

graph to show graphically the two equations that can be used to predict the repair time, one

corresponding to mechanical repairs and one corresponding to electrical repairs.

ŷ �
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FROM TABLE 15.6



672 Chapter 15 Multiple Regression

Region x1 x2

A 0 0

B 1 0

C 0 1

More Complex Categorical Variables

Because the categorical variable for the Johnson Filtration example had two levels (me-

chanical and electrical), defining a dummy variable with zero indicating a mechanical re-

pair and one indicating an electrical repair was easy. However, when a categorical variable

has more than two levels, care must be taken in both defining and interpreting the dummy

variables. As we will show, if a categorical variable has k levels, k � 1 dummy variables are

required, with each dummy variable being coded as 0 or 1.

For example, suppose a manufacturer of copy machines organized the sales territories

for a particular state into three regions: A, B, and C. The managers want to use regression

analysis to help predict the number of copiers sold per week. With the number of units sold

as the dependent variable, they are considering several independent variables (the number

of sales personnel, advertising expenditures, and so on). Suppose the managers believe sales

region is also an important factor in predicting the number of copiers sold. Because sales

region is a categorical variable with three levels,A, B and C, we will need 3 � 1 � 2 dummy

variables to represent the sales region. Each variable can be coded 0 or 1 as follows.

Observations corresponding to region A would be coded x1 � 0, x2 � 0; observations cor-

responding to region B would be coded x1 � 1, x2 � 0; and observations corresponding to

region C would be coded x1 � 0, x2 � 1.

The regression equation relating the expected value of the number of units sold, E( y),

to the dummy variables would be written as

To help us interpret the parameters �0, �1, and �2, consider the following three variations of

the regression equation.

Thus, �0 is the mean or expected value of sales for region A; �1 is the difference between

the mean number of units sold in region B and the mean number of units sold in region A;

and �2 is the difference between the mean number of units sold in region C and the mean

number of units sold in region A.

Two dummy variables were required because sales region is a categorical variable with

three levels. But the assignment of x1 � 0, x2 � 0 to indicate region A, x1 � 1, x2 � 0 to

E( y 
 region A)

E( y 
 region B)

E( y 
 region C)

� �0 � �1(0) � �2(0) � �0

� �0 � �1(1) � �2(0) � �0 � �1

� �0 � �1(0) � �2(1) � �0 � �2

E( y) � �0 � �1x1 � �2 
x2

A categorical variable with

k levels must be modeled

using k � 1 dummy

variables. Care must be

taken in defining and

interpreting the dummy

variables.

With this definition, we have the following values of x1 and x2.

x2 � �1 if sales region C

0 otherwise

x1 � �1 if sales region B

0 otherwise
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indicate region B, and x1 � 0, x2 � 1 to indicate region C was arbitrary. For example, we could

have chosen x1 � 1, x2 � 0 to indicate region A, x1 � 0, x2 � 0 to indicate region B, and

x1 � 0, x2 � 1 to indicate region C. In that case, �1 would have been interpreted as the mean

difference between regions A and B and �2 as the mean difference between regions C and B.

The important point to remember is that when a categorical variable has k levels, k � 1

dummy variables are required in the multiple regression analysis. Thus, if the sales region

example had a fourth region, labeled D, three dummy variables would be necessary. For ex-

ample, the three dummy variables can be coded as follows.

Exercises

Methods

32. Consider a regression study involving a dependent variable y, a categorical independent

variable x1, and a categorical variable with two levels (level 1 and level 2).

a. Write a multiple regression equation relating x1 and the categorical variable to y.

b. What is the expected value of y corresponding to level 1 of the categorical variable?

c. What is the expected value of y corresponding to level 2 of the categorical variable?

d. Interpret the parameters in your regression equation.

33. Consider a regression study involving a dependent variable y, a quantitative independent

variable x1, and a categorical independent variable with three possible levels (level 1, level

2, and level 3).

a. How many dummy variables are required to represent the categorical variable?

b. Write a multiple regression equation relating x1 and the categorical variable to y.

c. Interpret the parameters in your regression equation.

Applications

34. Management proposed the following regression model to predict sales at a fast-food outlet.

where

The following estimated regression equation was developed after 20 outlets were surveyed.

a. What is the expected amount of sales attributable to the drive-up window?

b. Predict sales for a store with two competitors, a population of 8000 within one mile,

and no drive-up window.

c. Predict sales for a store with one competitor, a population of 3000 within one mile,

and a drive-up window.

ŷ � 10.1 � 4.2x1 � 6.8x2 � 15.3x3

y � sales ($1000s)

x3 � �1 if drive-up window present

0 otherwise

x2 � population within one mile (1000s)

x1 � number of competitors within one mile

y � �0 � �1x1 � �2 
x2 � �3 

x3 � �

x3 � �1 if sales region D

0 otherwise
x2 � �1 if sales region C

0 otherwise
x1 � �1 if sales region B

0 otherwise

testSELF

testSELF
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35. Refer to the Johnson Filtration problem introduced in this section. Suppose that in addi-

tion to information on the number of months since the machine was serviced and whether

a mechanical or an electrical repair was necessary, the managers obtained a list showing

which repairperson performed the service. The revised data follow.

a. Ignore for now the months since the last maintenance service (x1) and the repairperson

who performed the service. Develop the estimated simple linear regression equation

to predict the repair time ( y) given the type of repair (x2). Recall that x2 � 0 if the type

of repair is mechanical and 1 if the type of repair is electrical.

b. Does the equation that you developed in part (a) provide a good fit for the observed

data? Explain.

c. Ignore for now the months since the last maintenance service and the type of repair

associated with the machine. Develop the estimated simple linear regression equa-

tion to predict the repair time given the repairperson who performed the service. Let

x3 � 0 if Bob Jones performed the service and x3 � 1 if Dave Newton performed the

service.

d. Does the equation that you developed in part (c) provide a good fit for the observed

data? Explain.

36. This problem is an extension of the situation described in exercise 35.

a. Develop the estimated regression equation to predict the repair time given the number

of months since the last maintenance service, the type of repair, and the repairperson

who performed the service.

b. At the .05 level of significance, test whether the estimated regression equation devel-

oped in part (a) represents a significant relationship between the independent variables

and the dependent variable.

c. Is the addition of the independent variable x3, the repairperson who performed the ser-

vice, statistically significant? Use α � .05. What explanation can you give for the 

results observed?

37. The Consumer Reports Restaurant Customer Satisfaction Survey is based upon 148,599 

visits to full-service restaurant chains (Consumer Reports website, February 11, 2009). 

Assume the following data are representative of the results reported. The variable Type 

indicates whether the restaurant is an Italian restaurant or a seafood/steakhouse. Price 

indicates the average amount paid per person for dinner and drinks, minus the tip. Score 

reflects diners’ overall satisfaction, with higher values indicating greater overall satisfac-

tion. A score of 80 can be interpreted as very satisfied.

Repair Time Months Since
in Hours Last Service Type of Repair Repairperson

2.9 2 Electrical Dave Newton
3.0 6 Mechanical Dave Newton
4.8 8 Electrical Bob Jones
1.8 3 Mechanical Dave Newton
2.9 2 Electrical Dave Newton
4.9 7 Electrical Bob Jones
4.2 9 Mechanical Bob Jones 
4.8 8 Mechanical Bob Jones
4.4 4 Electrical Bob Jones
4.5 6 Electrical Dave Newton

fileWEB
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Restaurant Type Price ($) Score

Bertucci’s Italian 16 77
Black Angus Steakhouse Seafood/Steakhouse 24 79
Bonefish Grill Seafood/Steakhouse 26 85
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a. Develop the estimated regression equation to show how overall customer satisfaction

is related to the independent variable average meal price.

b. At the .05 level of significance, test whether the estimated regression equation devel-

oped in part (a) indicates a significant relationship between overall customer satisfac-

tion and average meal price. 

c. Develop a dummy variable that will account for the type of restaurant (Italian or

seafood/steakhouse).

d. Develop the estimated regression equation to show how overall customer satisfaction is

related to the average meal price and the type of restaurant.

e. Is type of restaurant a significant factor in overall customer satisfaction?

f. Estimate the Consumer Reports customer satisfaction score for a seafood/steakhouse

that has an average meal price of $20. How much would the estimated score have

changed for an Italian restaurant? 

38. A 10-year study conducted by the American Heart Association provided data on how age,

blood pressure, and smoking relate to the risk of strokes. Assume that the following data

are from a portion of this study. Risk is interpreted as the probability (times 100) that the

patient will have a stroke over the next 10-year period. For the smoking variable, define a

dummy variable with 1 indicating a smoker and 0 indicating a nonsmoker.

Restaurant Type Price ($) Score

Bravo! Cucina Italiana Italian 18 84
Buca di Beppo Italian 17 81
Bugaboo Creek Steak House Seafood/Steakhouse 18 77
Carrabba’s Italian Grill Italian 23 86
Charlie Brown’s Steakhouse Seafood/Steakhouse 17 75
Il Fornaio Italian 28 83
Joe’s Crab Shack Seafood/Steakhouse 15 71
Johnny Carino’s Italian Italian 17 81
Lone Star Steakhouse & Saloon Seafood/Steakhouse 17 76
LongHorn Steakhouse Seafood/Steakhouse 19 81
Maggiano’s Little Italy Italian 22 83
McGrath’s Fish House Seafood/Steakhouse 16 81
Olive Garden Italian 19 81
Outback Steakhouse Seafood/Steakhouse 20 80
Red Lobster Seafood/Steakhouse 18 78
Romano’s Macaroni Grill Italian 18 82
The Old Spaghetti Factory Italian 12 79
Uno Chicago Grill Italian 16 76

Risk Age Pressure Smoker

12 57 152 No
24 67 163 No
13 58 155 No
56 86 177 Yes
28 59 196 No
51 76 189 Yes
18 56 155 Yes
31 78 120 No
37 80 135 Yes
15 78 98 No
22 71 152 No
36 70 173 Yes

(continued)
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a. Develop an estimated regression equation that relates risk of a stroke to the person’s

age, blood pressure, and whether the person is a smoker.

b. Is smoking a significant factor in the risk of a stroke? Explain. Use α � .05.

c. What is the probability of a stroke over the next 10 years for Art Speen, a 68-year-old

smoker who has blood pressure of 175? What action might the physician recommend

for this patient?

15.8 Residual Analysis

In Chapter 14 we pointed out that standardized residuals are frequently used in residual

plots and in the identification of outliers. The general formula for the standardized residual

for observation i follows.

STANDARDIZED RESIDUAL FOR OBSERVATION i

(15.23)

where

syi� ŷi
� the standard deviation of residual i

yi � ŷi

syi � ŷi

STANDARD DEVIATION OF RESIDUAL i

(15.24)

where

s �

hi �

standard error of the estimate

leverage of observation i

syi� ŷi
� s �1 � hi

The general formula for the standard deviation of residual i is defined as follows.

As we stated in Chapter 14, the leverage of an observation is determined by how far the val-

ues of the independent variables are from their means. The computation of hi, , and hence syi� ŷi

the standardized residual for observation i in multiple regression analysis is too complex to be 

Risk Age Pressure Smoker

15 67 135 Yes
48 77 209 Yes
15 60 199 No
36 82 119 Yes
8 66 166 No

34 80 125 Yes
3 62 117 No

37 59 207 Yes
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done by hand. However, the standardized residuals can be easily obtained as part of the output

from statistical software packages. Table 15.7 lists the predicted values, the residuals, and the

standardized residuals for the Butler Trucking example presented previously in this chapter;

we obtained these values by using the Minitab statistical software package. The predicted val-

ues in the table are based on the estimated regression equation � �.869 � .0611x1 � .923x2.

The standardized residuals and the predicted values of y from Table 15.7 are used in

Figure 15.10, the standardized residual plot for the Butler Trucking multiple regression ex-

ample. This standardized residual plot does not indicate any unusual abnormalities. Also,

all the standardized residuals are between �2 and �2; hence, we have no reason to ques-

tion the assumption that the error term � is normally distributed. We conclude that the model

assumptions are reasonable.

ŷ
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FIGURE 15.10 STANDARDIZED RESIDUAL PLOT FOR BUTLER TRUCKING

Miles Travel Predicted
Traveled Deliveries Time Value Residual Standardized

(x1) (x2) ( y) ( ) ( y � ) Residual

100 4 9.3 8.93846 0.361541 0.78344

50 3 4.8 4.95830 �0.158304 �0.34962

100 4 8.9 8.93846 �0.038460 �0.08334

100 2 6.5 7.09161 �0.591609 �1.30929

50 2 4.2 4.03488 0.165121 0.38167

80 2 6.2 5.86892 0.331083 0.65431

75 3 7.4 6.48667 0.913331 1.68917

65 4 6.0 6.79875 �0.798749 �1.77372

90 3 7.6 7.40369 0.196311 0.36703

90 2 6.1 6.48026 �0.380263 �0.77639

ŷŷ

TABLE 15.7 RESIDUALS AND STANDARDIZED RESIDUALS FOR THE BUTLER

TRUCKING REGRESSION ANALYSIS



678 Chapter 15 Multiple Regression

A normal probability plot also can be used to determine whether the distribution of �

appears to be normal. The procedure and interpretation for a normal probability plot were

discussed in Section 14.8. The same procedure is appropriate for multiple regression. Again,

we would use a statistical software package to perform the computations and provide the

normal probability plot.

Detecting Outliers

An outlier is an observation that is unusual in comparison with the other data; in other

words, an outlier does not fit the pattern of the other data. In Chapter 14 we showed an ex-

ample of an outlier and discussed how standardized residuals can be used to detect outliers.

Minitab classifies an observation as an outlier if the value of its standardized residual is less

than �2 or greater than �2. Applying this rule to the standardized residuals for the Butler

Trucking example (see Table 15.7), we do not detect any outliers in the data set.

In general, the presence of one or more outliers in a data set tends to increase s, the stan-

dard error of the estimate, and hence increase , the standard deviation of residual i. Be-

cause appears in the denominator of the formula for the standardized residual (15.23),

the size of the standardized residual will decrease as s increases. As a result, even though 

a residual may be unusually large, the large denominator in expression (15.23) may cause 

the standardized residual rule to fail to identify the observation as being an outlier. We can

circumvent this difficulty by using a form of the standardized residuals called studentized

deleted residuals.

Studentized Deleted Residuals and Outliers

Suppose the ith observation is deleted from the data set and a new estimated regression

equation is developed with the remaining n � 1 observations. Let s(i) denote the standard

error of the estimate based on the data set with the ith observation deleted. If we compute

the standard deviation of residual i using s(i) instead of s, and then compute the standard-

ized residual for observation i using the revised value, the resulting standardized resid-

ual is called a studentized deleted residual. If the ith observation is an outlier, s(i) will be less

than s. The absolute value of the ith studentized deleted residual therefore will be larger than

the absolute value of the standardized residual. In this sense, studentized deleted residuals

may detect outliers that standardized residuals do not detect.

Many statistical software packages provide an option for obtaining studentized deleted

residuals. Using Minitab, we obtained the studentized deleted residuals for the Butler

Trucking example; the results are reported in Table 15.8. The t distribution can be used to

syi� ŷi

syi� ŷi

sy� ŷi

Miles Traveled Deliveries Travel Time Standardized Studentized
(x1) (x2) ( y) Residual Deleted Residual

100 4 9.3 0.78344 0.75939

50 3 4.8 �0.34962 �0.32654

100 4 8.9 �0.08334 �0.07720

100 2 6.5 �1.30929 �1.39494

50 2 4.2 0.38167 0.35709

80 2 6.2 0.65431 0.62519

75 3 7.4 1.68917 2.03187

65 4 6.0 �1.77372 �2.21314

90 3 7.6 0.36703 0.34312

90 2 6.1 �0.77639 �0.75190

TABLE 15.8 STUDENTIZED DELETED RESIDUALS FOR BUTLER TRUCKING
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determine whether the studentized deleted residuals indicate the presence of outliers. Re-

call that p denotes the number of independent variables and n denotes the number of ob-

servations. Hence, if we delete the ith observation, the number of observations in the

reduced data set is n � 1; in this case the error sum of squares has (n � 1) � p � 1 degrees

of freedom. For the Butler Trucking example with n � 10 and p � 2, the degrees of free-

dom for the error sum of squares with the ith observation deleted is 9 � 2 � 1 � 6. At a .05

level of significance, the t distribution (Table 2 of Appendix B) shows that with six degrees

of freedom, t.025 � 2.447. If the value of the ith studentized deleted residual is less than

�2.447 or greater than �2.447, we can conclude that the ith observation is an outlier. The

studentized deleted residuals in Table 15.8 do not exceed those limits; therefore, we con-

clude that outliers are not present in the data set.

Influential Observations

In Section 14.9 we discussed how the leverage of an observation can be used to identify ob-

servations for which the value of the independent variable may have a strong influence on

the regression results. As we indicated in the discussion of standardized residuals, the lever-

age of an observation, denoted hi, measures how far the values of the independent variables

are from their mean values. The leverage values are easily obtained as part of the output

from statistical software packages. Minitab computes the leverage values and uses the rule

of thumb hi 	 3( p � 1)/n to identify influential observations. For the Butler Trucking ex-

ample with p � 2 independent variables and n � 10 observations, the critical value for

leverage is 3(2 � 1)/10 � .9. The leverage values for the Butler Trucking example obtained

by using Minitab are reported in Table 15.9. Because hi does not exceed .9, we do not 

detect influential observations in the data set.

Using Cook’s Distance Measure to Identify 
Influential Observations

A problem that can arise in using leverage to identify influential observations is that an ob-

servation can be identified as having high leverage and not necessarily be influential in

terms of the resulting estimated regression equation. For example, Table 15.10 is a data set

consisting of eight observations and their corresponding leverage values (obtained by using

Minitab). Because the leverage for the eighth observation is .91 	 .75 (the critical leverage

value), this observation is identified as influential. Before reaching any final conclusions,

however, let us consider the situation from a different perspective.

TABLE 15.10

DATA SET

ILLUSTRATING

POTENTIAL

PROBLEM USING

THE LEVERAGE

CRITERION

Leverage
xi yi hi

1 18 .204170
1 21 .204170
2 22 .164205
3 21 .138141
4 23 .125977
4 24 .125977
5 26 .127715

15 39 .909644

Miles Traveled Deliveries Travel Time Leverage Cook’s D
(x1) (x2) ( y) (hi) (Di)

100 4 9.3 .351704 .110994

50 3 4.8 .375863 .024536

100 4 8.9 .351704 .001256

100 2 6.5 .378451 .347923

50 2 4.2 .430220 .036663

80 2 6.2 .220557 .040381

75 3 7.4 .110009 .117562

65 4 6.0 .382657 .650029

90 3 7.6 .129098 .006656

90 2 6.1 .269737 .074217

TABLE 15.9 LEVERAGE AND COOK’S DISTANCE MEASURES FOR BUTLER TRUCKING
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Figure 15.11 shows the scatter diagram corresponding to the data set in Table 15.10. We

used Minitab to develop the following estimated regression equation for these data.

The straight line in Figure 15.11 is the graph of this equation. Now, let us delete the obser-

vation x � 15, y � 39 from the data set and fit a new estimated regression equation to the

remaining seven observations; the new estimated regression equation is

We note that the y-intercept and slope of the new estimated regression equation are not sig-

nificantly different from the values obtained by using all the data. Although the leverage

criterion identified the eighth observation as influential, this observation clearly had little

influence on the results obtained. Thus, in some situations using only leverage to identify

influential observations can lead to wrong conclusions.

Cook’s distance measure uses both the leverage of observation i, hi, and the residual

for observation i, ( yi � ), to determine whether the observation is influential.ŷi

ŷ � 18.1 � 1.42x

ŷ � 18.2 � 1.39x
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The estimated regression

equation with all the data is

y = 18.2 + 1.39x^

Note: If the point (15, 39) is deleted,

the estimated regression

equation is y = 18.1 + 1.42x^

FIGURE 15.11 SCATTER DIAGRAM FOR THE DATA SET IN TABLE 15.10
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Exercises

Methods

39. Data for two variables, x and y, follow.

xi 1 2 3 4 5

yi 3 7 5 11 14

a. Develop the estimated regression equation for these data.

b. Plot the standardized residuals versus . Do there appear to be any outliers in these

data? Explain.

c. Compute the studentized deleted residuals for these data. At the .05 level of signifi-

cance, can any of these observations be classified as an outlier? Explain.

ŷ

testSELF

COOK’S DISTANCE MEASURE

(15.25)

where

yi � ŷi �

hi �

p �

s �

the residual for observation i

the leverage for observation i

the number of independent variables

the standard error of the estimate

Di � Cook’s distance measure for observation i

Di �
( yi � ŷi)

2

( p � 1)s2  � hi

(1 � hi)
2�

The value of Cook’s distance measure will be large and indicate an influential observation

if the residual or the leverage is large. As a rule of thumb, values of Di 	 1 indicate that the

ith observation is influential and should be studied further. The last column of Table 15.9

provides Cook’s distance measure for the Butler Trucking problem as given by Minitab. 

Observation 8 with Di � .650029 has the most influence. However, applying the rule

Di 	 1, we should not be concerned about the presence of influential observations in the

Butler Trucking data set.

NOTES AND COMMENTS

1. The procedures for identifying outliers and influ-
ential observations provide warnings about the
potential effects some observations may have on
the regression results. Each outlier and influen-
tial observation warrants careful examination. If
data errors are found, the errors can be corrected
and the regression analysis repeated. In general,
outliers and influential observations should not
be removed from the data set unless clear evi-
dence shows that they are not based on elements
of the population being studied and should not
have been included in the original data set.

2. To determine whether the value of Cook’s dis-
tance measure Di is large enough to conclude
that the ith observation is influential, we can also
compare the value of Di to the 50th percentile of
an F distribution (denoted F.50) with p � 1 
numerator degrees of freedom and n � p � 1
denominator degrees of freedom. F tables corre-
sponding to a .50 level of significance must 
be available to carry out the test. The rule of
thumb we provided (Di 	 1) is based on the fact
that the table value is close to one for a wide 
variety of cases.
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Weekly Gross Revenue Television Advertising Newspaper Advertising
($1000s) ($1000s) ($1000s)

96 5.0 1.5
90 2.0 2.0
95 4.0 1.5
92 2.5 2.5
95 3.0 3.3
94 3.5 2.3
94 2.5 4.2
94 3.0 2.5

40. Data for two variables, x and y, follow.

xi 22 24 26 28 40

yi 12 21 31 35 70

a. Develop the estimated regression equation for these data.

b. Compute the studentized deleted residuals for these data. At the .05 level of signifi-

cance, can any of these observations be classified as an outlier? Explain.

c. Compute the leverage values for these data. Do there appear to be any influential 

observations in these data? Explain.

d. Compute Cook’s distance measure for these data. Are any observations influential?

Explain.

Applications

41. Exercise 5 gave the following data on weekly gross revenue, television advertising, and

newspaper advertising for Showtime Movie Theaters.

Curb Speed at
Price Weight ¹⁄₄ Mile

Sports & GT Car ($1000s) (lb.) Horsepower (mph)

Acura Integra Type R 25.035 2577 195 90.7
Acura NSX-T 93.758 3066 290 108.0
BMW Z3 2.8 40.900 2844 189 93.2
Chevrolet Camaro Z28 24.865 3439 305 103.2
Chevrolet Corvette Convertible 50.144 3246 345 102.1
Dodge Viper RT/10 69.742 3319 450 116.2
Ford Mustang GT 23.200 3227 225 91.7
Honda Prelude Type SH 26.382 3042 195 89.7
Mercedes-Benz CLK320 44.988 3240 215 93.0
Mercedes-Benz SLK230 42.762 3025 185 92.3
Mitsubishi 3000GT VR-4 47.518 3737 320 99.0

a. Find an estimated regression equation relating weekly gross revenue to television and

newspaper advertising.

b. Plot the standardized residuals against . Does the residual plot support the assump-

tions about �? Explain.

c. Check for any outliers in these data. What are your conclusions?

d. Are there any influential observations? Explain.

42. The following data show the curb weight, horsepower, and ¹⁄₄-mile speed for 16 popular

sports and GT cars. Suppose that the price of each sports and GT car is also available. The

complete data set is as follows:

ŷ

testSELF
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a. Find the estimated regression equation, which uses price and horsepower to predict 
¹⁄₄-mile speed.

b. Plot the standardized residuals against . Does the residual plot support the assump-

tion about �? Explain.

c. Check for any outliers. What are your conclusions?

d. Are there any influential observations? Explain.

43. The Ladies Professional Golfers Association (LPGA) maintains statistics on performance

and earnings for members of the LPGA Tour. Year-end performance statistics for the

30 players who had the highest total earnings in LPGA Tour events for 2005 appear in the

file named LPGA (LPGA website, 2006). Earnings ($1000s) is the total earnings in thou-

sands of dollars; Scoring Avg. is the average score for all events; Greens in Reg. is the per-

centage of time a player is able to hit the green in regulation; and Putting Avg. is the average

number of putts taken on greens hit in regulation. A green is considered hit in regulation if

any part of the ball is touching the putting surface and the difference between the value of

par for the hole and the number of strokes taken to hit the green is at least 2.

a. Develop an estimated regression equation that can be used to predict the average score

for all events given the percentage of time a player is able to hit the green in regula-

tion and the average number of putts taken on greens hit in regulation.

b. Plot the standardized residuals against . Does the residual plot support the assump-

tion about �? Explain.

c. Check for any outliers. What are your conclusions?

d. Are there any influential observations? Explain.

15.9 Logistic Regression

In many regression applications the dependent variable may only assume two discrete val-

ues. For instance, a bank might like to develop an estimated regression equation for pre-

dicting whether a person will be approved for a credit card. The dependent variable can be

coded as y � 1 if the bank approves the request for a credit card and y � 0 if the bank re-

jects the request for a credit card. Using logistic regression we can estimate the probability

that the bank will approve the request for a credit card given a particular set of values for

the chosen independent variables.

Let us consider an application of logistic regression involving a direct mail promotion be-

ing used by Simmons Stores. Simmons owns and operates a national chain of women’s ap-

parel stores. Five thousand copies of an expensive four-color sales catalog have been printed,

and each catalog includes a coupon that provides a $50 discount on purchases of $200 or more.

The catalogs are expensive and Simmons would like to send them to only those customers

who have the highest probability of using the coupon.

Management thinks that annual spending at Simmons Stores and whether a customer

has a Simmons credit card are two variables that might be helpful in predicting whether

a customer who receives the catalog will use the coupon. Simmons conducted a pilot

ŷ

ŷ

Curb Speed at
Price Weight ¹⁄₄ Mile

Sports & GT Car ($1000s) (lb.) Horsepower (mph)

Nissan 240SX SE 25.066 2862 155 84.6
Pontiac Firebird Trans Am 27.770 3455 305 103.2
Porsche Boxster 45.560 2822 201 93.2
Toyota Supra Turbo 40.989 3505 320 105.0
Volvo C70 41.120 3285 236 97.0
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If the two values of the dependent variable y are coded as 0 or 1, the value of E( y) in equa-

tion (15.27) provides the probability that y � 1 given a particular set of values for the 

study using a random sample of 50 Simmons credit card customers and 50 other 

customers who do not have a Simmons credit card. Simmons sent the catalog to each of

the 100 customers selected. At the end of a test period, Simmons noted whether the cus-

tomer used the coupon. The sample data for the first 10 catalog recipients are shown in

Table 15.11. The amount each customer spent last year at Simmons is shown in thousands

of dollars and the credit card information has been coded as 1 if the customer has a

Simmons credit card and 0 if not. In the Coupon column, a 1 is recorded if the sampled

customer used the coupon and 0 if not.

We might think of building a multiple regression model using the data in Table 15.11 to

help Simmons predict whether a catalog recipient will use the coupon.We would use Annual

Spending and Simmons Card as independent variables and Coupon as the dependent vari-

able. Because the dependent variable may only assume the values of 0 or 1, however, the or-

dinary multiple regression model is not applicable. This example shows the type of situation

for which logistic regression was developed. Let us see how logistic regression can be used

to help Simmons predict which type of customer is most likely to take advantage of their

promotion.

Logistic Regression Equation

In many ways logistic regression is like ordinary regression. It requires a dependent vari-

able, y, and one or more independent variables. In multiple regression analysis, the mean or

expected value of y is referred to as the multiple regression equation.

(15.26)

In logistic regression, statistical theory as well as practice has shown that the relation-

ship between E( y) and x1, x2, . . . , xp is better described by the following nonlinear equation.

E( y) � �0 � �1x1 � �2
 

x2 � . . . � �p
 

xp

Annual Spending
Customer ($1000) Simmons Card Coupon

1 2.291 1 0

2 3.215 1 0

3 2.135 1 0

4 3.924 0 0

5 2.528 1 0

6 2.473 0 1

7 2.384 0 0

8 7.076 0 0

9 1.182 1 1

10 3.345 0 0

TABLE 15.11 PARTIAL SAMPLE DATA FOR THE SIMMONS STORES EXAMPLE

LOGISTIC REGRESSION EQUATION

(15.27)E( y) �
e 

�0��1x1��2x2�...��p xp

1 � e 
�0��1x1��2x2�...��p xp

fileWEB

Simmons



15.9 Logistic Regression 685

independent variables x1, x2, . . . , xp. Because of the interpretation of E( y) as a probability,

the logistic regression equation is often written as follows.

To provide a better understanding of the characteristics of the logistic regression equa-

tion, suppose the model involves only one independent variable x and the values of the

model parameters are �0 � �7 and �1 � 3. The logistic regression equation corresponding

to these parameter values is

(15.29)

Figure 15.12 shows a graph of equation (15.29). Note that the graph is S-shaped. The value

of E( y) ranges from 0 to 1, with the value of E( y) gradually approaching 1 as the value of x

becomes larger and the value of E( y) approaching 0 as the value of x becomes smaller. Note

also that the values of E( y), representing probability, increase fairly rapidly as x increases from

2 to 3. The fact that the values of E( y) range from 0 to 1 and that the curve is S-shaped makes

equation (15.29) ideally suited to model the probability the dependent variable is equal to 1.

Estimating the Logistic Regression Equation

In simple linear and multiple regression the least squares method is used to compute b0,

b1, . . . , bp as estimates of the model parameters ( �0, �1, . . . , �p). The nonlinear form of the

logistic regression equation makes the method of computing estimates more complex and

beyond the scope of this text. We will use computer software to provide the estimates. The

estimated logistic regression equation is

E( y) � P( y � 1�x) �
e 

�0��1x

1 � e 
�0��1x

�
e�7�3x

1 � e�7�3x

INTERPRETATION OF E( y) AS A PROBABILITY IN LOGISTIC REGRESSION

(15.28)E( y) � P( y � 1�x1, x2, . . . , xp)
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FIGURE 15.12 LOGISTIC REGRESSION EQUATION FOR �0 � �7 AND �1 � 3
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Here, provides an estimate of the probability that y � 1, given a particular set of values

for the independent variables.

Let us now return to the Simmons Stores example. The variables in the study are de-

fined as follows:

Thus, we choose a logistic regression equation with two independent variables.

(15.31)

Using the sample data (see Table 15.11), Minitab’s binary logistic regression procedure

was used to compute estimates of the model parameters �0, �1, and �2. A portion of the out-

put obtained is shown in Figure 15.13. We see that b0 � �2.14637, b1 � 0.341643, and

b2 � 1.09873. Thus, the estimated logistic regression equation is

(15.32)

We can now use equation (15.32) to estimate the probability of using the coupon for a

particular type of customer. For example, to estimate the probability of using the coupon

for customers who spend $2000 annually and do not have a Simmons credit card, we sub-

stitute x1 � 2 and x2 � 0 into equation (15.32).

ŷ �
eb0�b1x1�b2x2

1 � eb0�b1x1�b2x2
�

e�2.14637�0.341643x1�1.09873x2

1 � e�2.14637�0.341643x1�1.09873x2

E( y) �
e 

�0��1x1��2x2

1 � e 
�0��1x1��2x2

x2 � �0 if the customer does not have a Simmons credit card

1 if the customer has a Simmons credit card

x1 � annual spending at Simmons Stores ($1000s)

y � �0 if the customer did not use the coupon

1 if the customer used the coupon

ŷ

In Appendix 15.3 we show

how Minitab is used to

generate the output in

Figure 15.13.

Logistic Regression Table

Odds    95%  CI

Predictor      Coef    SE Coef      Z       p   Ratio  Lower  Upper

Constant   -2.14637   0.577245  -3.72   0.000

Spending   0.341643   0.128672   2.66   0.008    1.41   1.09   1.81

Card        1.09873   0.444696   2.47   0.013    3.00   1.25   7.17

Log-Likelihood = -60.487

Test that all slopes are zero: G = 13.628, DF = 2, P-Value = 0.001

FIGURE 15.13 PARTIAL LOGISTIC REGRESSION OUTPUT FOR THE SIMMONS

STORES EXAMPLE

In the Minitab output,

x1 � Spending and 

x2 � Card.

ESTIMATED LOGISTIC REGRESSION EQUATION

(15.30)ŷ � estimate of P( y � 1�x1, x2, . . . , xp 
) �

eb0�b1x1�b2x2�...�bp xp

1 � eb0�b1x1�b2x2�...�bp xp
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Thus, an estimate of the probability of using the coupon for this particular group of cus-

tomers is approximately 0.19. Similarly, to estimate the probability of using the coupon for

customers who spent $2000 last year and have a Simmons credit card, we substitute x1 � 2

and x2 � 1 into equation (15.32).

Thus, for this group of customers, the probability of using the coupon is approximately 0.41.

It appears that the probability of using the coupon is much higher for customers with a

Simmons credit card. Before reaching any conclusions, however, we need to assess the

statistical significance of our model.

Testing for Significance

Testing for significance in logistic regression is similar to testing for significance in multi-

ple regression. First we conduct a test for overall significance. For the Simmons Stores 

example, the hypotheses for the test of overall significance follow:

The test for overall significance is based upon the value of a G test statistic. If the null

hypothesis is true, the sampling distribution of G follows a chi-square distribution with de-

grees of freedom equal to the number of independent variables in the model. Although the

computation of G is beyond the scope of the book, the value of G and its corresponding 

p-value are provided as part of Minitab’s binary logistic regression output. Referring to the

last line in Figure 15.13, we see that the value of G is 13.628, its degrees of freedom are 2,

and its p-value is 0.001. Thus, at any level of significance α � .001, we would reject the

null hypothesis and conclude that the overall model is significant.

If the G test shows an overall significance, a z test can be used to determine whether

each of the individual independent variables is making a significant contribution to the 

overall model. For the independent variables xi, the hypotheses are

If the null hypothesis is true, the value of the estimated coefficient divided by its standard

error follows a standard normal probability distribution. The column labeled Z in the

Minitab output contains the values of zi � bi / for each of the estimated coefficients and sbi

H0:

Ha:
 
�i � 0

�i � 0

H0:

Ha:
 
�1 � �2 � 0

One or both of the parameters is not equal to zero

ŷ �
e�2.14637�0.341643(2)�1.09873(1)

1 � e�2.14637�0.341643(2)�1.09873(1) �
e�0.3644

1 � e�0.3644 �
.6946

1.6946
� 0.4099

ŷ �
e�2.14637�0.341643(2)�1.09873(0)

1 � e�2.14637�0.341643(2)�1.09873(0) �
e�1.4631

1 � e�1.4631 �
.2315

1.2315
� 0.1880

the column labeled p contains the corresponding p-values. Suppose we use α � .05 to test

for the significance of the independent variables in the Simmons model. For the inde-

pendent variable x1 the z value is 2.66 and the corresponding p-value is .008. Thus, at the 

.05 level of significance we can reject H0: �1 � 0. In a similar fashion we can also reject 

H0: �2 � 0 because the p-value corresponding to z � 2.47 is .013. Hence, at the .05 level

of significance, both independent variables are statistically significant.
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Annual Spending

$1000 $2000 $3000 $4000 $5000 $6000 $7000

Credit Yes 0.3305 0.4099 0.4943 0.5791 0.6594 0.7315 0.7931

Card No 0.1413 0.1880 0.2457 0.3144 0.3922 0.4759 0.5610

TABLE 15.12 ESTIMATED PROBABILITIES FOR SIMMONS STORES

Managerial Use

We described how to develop the estimated logistic regression equation and how to test it

for significance. Let us now use it to make a decision recommendation concerning the

Simmons Stores catalog promotion. For Simmons Stores, we already computed

P( y � 1	x1 � 2, x2 � 1) � .4099 and P( y � 1	x1 � 2, x2 � 0) � .1880. These probabili-

ties indicate that for customers with annual spending of $2000 the presence of a Simmons

credit card increases the probability of using the coupon. In Table 15.12 we show estimated

probabilities for values of annual spending ranging from $1000 to $7000 for both customers

who have a Simmons credit card and customers who do not have a Simmons credit card.

How can Simmons use this information to better target customers for the new promotion?

Suppose Simmons wants to send the promotional catalog only to customers who have a 0.40

or higher probability of using the coupon. Using the estimated probabilities in Table 15.12,

Simmons promotion strategy would be:

Customers who have a Simmons credit card: Send the catalog to every customer who

spent $2000 or more last year.

Customers who do not have a Simmons credit card: Send the catalog to every customer

who spent $6000 or more last year.

Looking at the estimated probabilities further, we see that the probability of using the

coupon for customers who do not have a Simmons credit card but spend $5000 annually is

0.3922. Thus, Simmons may want to consider revising this strategy by including those cus-

tomers who do not have a credit card, as long as they spent $5000 or more last year.

Interpreting the Logistic Regression Equation

Interpreting a regression equation involves relating the independent variables to the busi-

ness question that the equation was developed to answer. With logistic regression, it is dif-

ficult to interpret the relation between the independent variables and the probability that

y � 1 directly because the logistic regression equation is nonlinear. However, statisticians

have shown that the relationship can be interpreted indirectly using a concept called the

odds ratio.

The odds in favor of an event occurring is defined as the probability the event will

occur divided by the probability the event will not occur. In logistic regression the event of

interest is always y � 1. Given a particular set of values for the independent variables, the

odds in favor of y � 1 can be calculated as follows:

(15.33)

The odds ratio measures the impact on the odds of a one-unit increase in only one 

of the independent variables. The odds ratio is the odds that y � 1 given that one of the 

odds �

P( y � 1�x1, x2, . . . , xp)

P( y � 0�x1, x2, . . . , xp)
�

P( y � 1�x1, x2, . . . , xp)

1 � P( y � 1�x1, x2, . . . , xp)
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For example, suppose we want to compare the odds of using the coupon for customers

who spend $2000 annually and have a Simmons credit card (x1 � 2 and x2 � 1) to the odds

of using the coupon for customers who spend $2000 annually and do not have a Simmons

credit card (x1 � 2 and x2 � 0). We are interested in interpreting the effect of a one-unit 

increase in the independent variable x2. In this case

and

Previously we showed that an estimate of the probability that y � 1 given x1 � 2 and x2 � 1

is .4099, and an estimate of the probability that y � 1 given x1 � 2 and x2 � 0 is .1880. Thus,

and

The estimated odds ratio is

Thus, we can conclude that the estimated odds in favor of using the coupon for customers

who spent $2000 last year and have a Simmons credit card are 3 times greater than the es-

timated odds in favor of using the coupon for customers who spent $2000 last year and do

not have a Simmons credit card.

The odds ratio for each independent variable is computed while holding all the other inde-

pendent variables constant. But it does not matter what constant values are used for the other in-

dependent variables. For instance, if we computed the odds ratio for the Simmons credit card

variable (x2) using $3000, instead of $2000, as the value for the annual spending variable (x1),

we would still obtain the same value for the estimated odds ratio (3.00). Thus, we can conclude

that the estimated odds of using the coupon for customers who have a Simmons credit card are

3 times greater than the estimated odds of using the coupon for customers who do not have a

Simmons credit card.

The odds ratio is standard output for logistic regression software packages. Refer to the

Minitab output in Figure 15.13. The column with the heading Odds Ratio contains the 

Estimated odds ratio �
.6946

.2315
� 3.00

estimate of odds0 �
.1880

1 � .1880
� .2315

estimate of odds1 �
.4099

1 � .4099
� .6946

odds0 �
P( y � 1�x1 � 2, x2 � 0)

1 � P( y � 1�x1 � 2, x2 � 0)

odds1 �
P( y � 1�x1 � 2, x2 � 1)

1 � P( y � 1�x1 � 2, x2 � 1)

ODDS RATIO

(15.34)Odds Ratio �
odds1

odds0

independent variables has been increased by one unit (odds1) divided by the odds that y � 1

given no change in the values for the independent variables (odds0).
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estimated odds ratios for each of the independent variables. The estimated odds ratio for x1

is 1.41 and the estimated odds ratio for x2 is 3.00. We already showed how to interpret the

estimated odds ratio for the binary independent variable x2. Let us now consider the inter-

pretation of the estimated odds ratio for the continuous independent variable x1.

The value of 1.41 in the Odds Ratio column of the Minitab output tells us that the esti-

mated odds in favor of using the coupon for customers who spent $3000 last year is 1.41

times greater than the estimated odds in favor of using the coupon for customers who spent

$2000 last year. Moreover, this interpretation is true for any one-unit change in x1. For in-

stance, the estimated odds in favor of using the coupon for someone who spent $5000 last

year is 1.41 times greater than the odds in favor of using the coupon for a customer who

spent $4000 last year. But suppose we are interested in the change in the odds for an increase

of more than one unit for an independent variable. Note that x1 can range from 1 to 7. The

odds ratio given by the Minitab output does not answer this question. To answer this ques-

tion we must explore the relationship between the odds ratio and the regression coefficients.

A unique relationship exists between the odds ratio for a variable and its corresponding

regression coefficient. For each independent variable in a logistic regression equation it can

be shown that

To illustrate this relationship, consider the independent variable x1 in the Simmons 

example. The estimated odds ratio for x1 is

Similarly, the estimated odds ratio for x2 is

This relationship between the odds ratio and the coefficients of the independent variables

makes it easy to compute estimates of the odds ratios once we develop estimates of the

model parameters. Moreover, it also provides us with the ability to investigate changes in

the odds ratio of more than or less than one unit for a continuous independent variable.

The odds ratio for an independent variable represents the change in the odds for a one-

unit change in the independent variable holding all the other independent variables constant.

Suppose that we want to consider the effect of a change of more than one unit, say c units.

For instance, suppose in the Simmons example that we want to compare the odds of using

the coupon for customers who spend $5000 annually (x1 � 5) to the odds of using the coupon

for customers who spend $2000 annually (x1 � 2). In this case c � 5 � 2 � 3 and the cor-

responding estimated odds ratio is

This result indicates that the estimated odds of using the coupon for customers who spend

$5000 annually is 2.79 times greater than the estimated odds of using the coupon for cus-

tomers who spend $2000 annually. In other words, the estimated odds ratio for an increase

of $3000 in annual spending is 2.79.

In general, the odds ratio enables us to compare the odds for two different events. If the

value of the odds ratio is 1, the odds for both events are the same. Thus, if the independent

variable we are considering (such as Simmons credit card status) has a positive impact on the

probability of the event occurring, the corresponding odds ratio will be greater than 1. Most

logistic regression software packages provide a confidence interval for the odds ratio. The

Minitab output in Figure 15.13 provides a 95% confidence interval for each of the odds

ecb1 � e3(.341643)
� e1.0249

� 2.79

Estimated odds ratio � e 
b2 � e1.09873

� 3.00

Estimated odds ratio � e 
b1 � e .341643

� 1.41

Odds ratio � e 
�i
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Thus, in terms of the estimated logit, the estimated regression equation is

(15.38)

For the Simmons Stores example, the estimated logit is

and the estimated regression equation is

Thus, because of the unique relationship between the estimated logit and the estimated lo-

gistic regression equation, we can compute the estimated probabilities for Simmons Stores

by dividing by 1 � .e ĝ(x1, x2)e ĝ(x1, x2)

ŷ �
e 

ĝ(x1, x2)

1 � e 
ĝ(x1, x2) �

e�2.14637�0.341643x1�1.09873x2

1 � e�2.14637�0.341643x1�1.09873x2

ĝ(x1, x2) � �2.14637 � 0.341643x1 � 1.09873x2

ŷ �
e b0�b1x1�b2x2�. . .�bpxp

1 � e b0�b1x1�b2x2�. . .�bpxp
�

e 
ĝ(x1, x2, . . . , xp)

1 � e 
ĝ(x1, x2, . . . , xp)

ratios. For example, the point estimate of the odds ratio for x1 is 1.41 and the 95% confidence

interval is 1.09 to 1.81. Because the confidence interval does not contain the value of 1, we

can conclude that x1, has a significant effect on the estimated odds ratio. Similarly, the 95%

confidence interval for the odds ratio for x2 is 1.25 to 7.17. Because this interval does not

contain the value of 1, we can also conclude that x2 has a significant effect on the odds ratio.

Logit Transformation

An interesting relationship can be observed between the odds in favor of y � 1 and the 

exponent for e in the logistic regression equation. It can be shown that

This equation shows that the natural logarithm of the odds in favor of y � 1 is a linear func-

tion of the independent variables. This linear function is called the logit. We will use the

notation g(x1, x2, . . . , xp) to denote the logit.

ln(odds) � �0 � �1x1 � �2 
x2 � . . . � �p 

xp

LOGIT

(15.35)g(x1, x2, . . . , xp) � �0 � �1x1 � �2 
x2 � . . . � �p 

xp

Substituting g(x1, x2, . . . , xp) for �1 � �1x1 � �2x2 � . . . � �pxp in equation (15.27), we

can write the logistic regression equation as

(15.36)

Once we estimate the parameters in the logistic regression equation, we can compute

an estimate of the logit. Using (x1, x2, . . . , xp) to denote the estimated logit, we obtainĝ

E( y) �
e g(x1, x2, . . . , xp)

1 � e g(x1, x2, . . . , xp)

ESTIMATED LOGIT

(15.37)ĝ(x1, x2, . . . , xp) � b0 � b1x1 � b2 
x2 � . . . � bp 

xp
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Exercises

Applications

44. Refer to the Simmons Stores example introduced in this section. The dependent variable is

coded as y � 1 if the customer used the coupon and 0 if not. Suppose that the only informa-

tion available to help predict whether the customer will use the coupon is the customer’s

credit card status, coded as x � 1 if the customer has a Simmons credit card and x � 0 if not.

a. Write the logistic regression equation relating x to y.

b. What is the interpretation of E( y) when x � 0?

c. For the Simmons data in Table 15.11, use Minitab to compute the estimated logit.

d. Use the estimated logit computed in part (c) to compute an estimate of the probability

of using the coupon for customers who do not have a Simmons credit card and an es-

timate of the probability of using the coupon for customers who have a Simmons credit

card.

e. What is the estimate of the odds ratio? What is its interpretation?

45. In Table 15.12 we provided estimates of the probability using the coupon in the Simmons

Stores catalog promotion. A different value is obtained for each combination of values for

the independent variables.

a. Compute the odds in favor of using the coupon for a customer with annual spending

of $4000 who does not have a Simmons credit card (x1 � 4, x2 � 0).

b. Use the information in Table 15.12 and part (a) to compute the odds ratio for the 

Simmons credit card variable x2 � 0, holding annual spending constant at x1 � 4.

c. In the text, the odds ratio for the credit card variable was computed using the infor-

mation in the $2000 column of Table 15.12. Did you get the same value for the odds

ratio in part (b)?

46. Community Bank would like to increase the number of customers who use payroll direct

deposit. Management is considering a new sales campaign that will require each branch

manager to call each customer who does not currently use payroll direct deposit. As an in-

centive to sign up for payroll direct deposit, each customer contacted will be offered free

checking for two years. Because of the time and cost associated with the new campaign,

management would like to focus their efforts on customers who have the highest proba-

bility of signing up for payroll direct deposit. Management believes that the average

monthly balance in a customer’s checking account may be a useful predictor of whether

the customer will sign up for direct payroll deposit. To investigate the relationship between

these two variables, Community Bank tried the new campaign using a sample of 50 check-

ing account customers who do not currently use payroll direct deposit. The sample data

show the average monthly checking account balance (in hundreds of dollars) and whether

the customer contacted signed up for payroll direct deposit (coded 1 if the customer signed

up for payroll direct deposit and 0 if not). The data are contained in the data set named

Bank; a portion of the data follows.

NOTES AND COMMENTS

1. Because of the unique relationship between the
estimated coefficients in the model and the cor-
responding odds ratios, the overall test for sig-
nificance based upon the G statistic is also a test
of overall significance for the odds ratios. In ad-
dition, the z test for the individual significance of
a model parameter also provides a statistical test
of significance for the corresponding odds ratio.

2. In simple and multiple regression, the coefficient
of determination is used to measure the goodness
of fit. In logistic regression, no single measure
provides a similar interpretation. A discussion of
goodness of fit is beyond the scope of our intro-
ductory treatment of logistic regression.

fileWEB

Simmons
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The dependent variable was coded as y � 1 if the student returned to Lakeland for the

sophomore year and y � 0 if not. The two independent variables are:

x2 � �0 if the student did not attend the orientation program

1 if the student attended the orientation program

x1 � GPA at the end of the first semester

Customer x � Monthly Balance y � Direct Deposit

1 1.22 0
2 1.56 0
3 2.10 0
4 2.25 0
5 2.89 0
6 3.55 0
7 3.56 0
8 3.65 1
. . .
. . .
. . .

48 18.45 1
49 24.98 0
50 26.05 1

Student GPA Program Return

1 3.78 1 1
2 2.38 0 1
3 1.30 0 0
4 2.19 1 0
5 3.22 1 1
6 2.68 1 1

. . . .

. . . .

. . . .
98 2.57 1 1
99 1.70 1 1

100 3.85 1 1

a. Write the logistic regression equation relating x to y.

b. For the Community Bank data, use Minitab to compute the estimated logistic regres-

sion equation.

c. Conduct a test of significance using the G test statistic. Use α � .05.

d. Estimate the probability that customers with an average monthly balance of $1000 will

sign up for direct payroll deposit.

e. Suppose Community Bank only wants to contact customers who have a .50 or higher

probability of signing up for direct payroll deposit. What is the average monthly bal-

ance required to achieve this level of probability?

f. What is the estimate of the odds ratio? What is its interpretation?

47. Over the past few years the percentage of students who leave Lakeland College at the end

of the first year has increased. Last year Lakeland started a voluntary one-week orientation

program to help first-year students adjust to campus life. If Lakeland is able to show that

the orientation program has a positive effect on retention, they will consider mak-

ing the program a requirement for all first-year students. Lakeland’s administration also

suspects that students with lower GPAs have a higher probability of leaving Lakeland at

the end of the first year. In order to investigate the relation of these variables to retention,

Lakeland selected a random sample of 100 students from last year’s entering class. The

data are contained in the data set named Lakeland; a portion of the data follows.

fileWEB

Bank

fileWEB

Lakeland



694 Chapter 15 Multiple Regression

Suppose that you would like to determine whether products that cost more rate higher in

quality. For the purpose of this exercise, use the following binary dependent variable:

a. Write the logistic regression equation relating x � price per serving to y.

b. Use Minitab to compute the estimated logit.

c. Use the estimated logit computed in part (b) to compute an estimate of the probabil-

ity a chocolate that has a price per serving of $4.00 will have a quality rating of very

good or excellent.

d. What is the estimate of the odds ratio? What is its interpretation?

Summary

In this chapter, we introduced multiple regression analysis as an extension of simple linear

regression analysis presented in Chapter 14. Multiple regression analysis enables us to 

understand how a dependent variable is related to two or more independent variables. The

y � 1 if the quality rating is very good or excellent and 0 if good or fair

Manufacturer Price Rating

Bernard Callebaut 3.17 Very Good
Candinas 3.58 Excellent
Fannie May 1.49 Good
Godiva 2.91 Very Good
Hershey’s 0.76 Good
L.A. Burdick 3.70 Very Good
La Maison du Chocolate 5.08 Excellent
Leonidas 2.11 Very Good
Lindt 2.20 Good
Martine’s 4.76 Excellent
Michael Recchiuti 7.05 Very Good
Neuchatel 3.36 Good
Neuchatel Sugar Free 3.22 Good
Richard Donnelly 6.55 Very Good
Russell Stover 0.70 Good
See’s 1.06 Very Good
Teuscher Lake of Zurich 4.66 Very Good
Whitman’s 0.70 Fair
Whitman’s Sugar Free 1.21 Fair

a. Write the logistic regression equation relating x1 and x2 to y.

b. What is the interpretation of E( y) when x2 � 0?

c. Use both independent variables and Minitab to compute the estimated logit.

d. Conduct a test for overall significance using α � .05.

e. Use α � .05 to determine whether each of the independent variables is significant.

f. Use the estimated logit computed in part (c) to compute an estimate of the probability

that students with a 2.5 grade point average who did not attend the orientation program

will return to Lakeland for their sophomore year. What is the estimated probability for

students with a 2.5 grade point average who attended the orientation program?

g. What is the estimate of the odds ratio for the orientation program? Interpret it.

h. Would you recommend making the orientation program a required activity? Why or

why not?

48. Consumer Reports conducted a taste test on 19 brands of boxed chocolates. The following

data show the price per serving, based on the FDA serving size of 1.4 ounces, and the qual-

ity rating for the 19 chocolates tested (Consumer Reports, February 2002).

fileWEB

Chocolate
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mulitple regression equation E( y) � �0 � �1x1 � �2x2 � . . . � �pxp shows that the mean

or expected value of the dependent variable y, denoted E( y), is related to the values of the

independent variables x1, x2, . . . , xp. Sample data and the least squares method are used to

develop the estimated multiple regression equation � b0 � b1x1 � b2x2 � . . . � bpxp. In

effect b0, b1, b2, . . . , bp are sample statistics used to estimate the unknown model parame-

ters �0, �1, �2, . . . , �p. Computer printouts were used throughout the chapter to emphasize

the fact that statistical software packages are the only realistic means of performing the nu-

merous computations required in multiple regression analysis.

The multiple coefficient of determination was presented as a measure of the goodness

of fit of the estimated regression equation. It determines the proportion of the variation of

y that can be explained by the estimated regression equation. The adjusted multiple coeffi-

cient of determination is a similar measure of goodness of fit that adjusts for the number of

independent variables and thus avoids overestimating the impact of adding more indepen-

dent variables.

An F test and a t test were presented as ways to determine statistically whether the re-

lationship among the variables is significant. The F test is used to determine whether there

is a significant overall relationship between the dependent variable and the set of all inde-

pendent variables. The t test is used to determine whether there is a significant relationship

between the dependent variable and an individual independent variable given the other in-

dependent variables in the regression model. Correlation among the independent variables,

known as multicollinearity, was discussed.

The section on categorical independent variables showed how dummy variables can be

used to incorporate categorical data into multiple regression analysis. The section on resid-

ual analysis showed how residual analysis can be used to validate the model assumptions,

detect outliers, and identify influential observations. Standardized residuals, leverage, stu-

dentized deleted residuals, and Cook’s distance measure were discussed. The chapter con-

cluded with a section on how logistic regression can be used to model situations in which

the dependent variable may only assume two values.

Glossary

Multiple regression analysis Regression analysis involving two or more independent variables.

Multiple regression model The mathematical equation that describes how the dependent

variable y is related to the independent variables x1, x2, . . . , xp and an error term �.

Multiple regression equation The mathematical equation relating the expected value or

mean value of the dependent variable to the values of the independent variables; that is,

E( y) � �0 � �1x1 � �2x2 � . . . � �pxp.

Estimated multiple regression equation The estimate of the multiple regression equation

based on sample data and the least squares method; it is � b0 � b1x1 � b2x2 � . . . � bpxp.

Least squares method The method used to develop the estimated regression equation. It

minimizes the sum of squared residuals (the deviations between the observed values of the

dependent variable, yi, and the estimated values of the dependent variable, ).

Multiple coefficient of determination A measure of the goodness of fit of the estimated

multiple regression equation. It can be interpreted as the proportion of the variability in the

dependent variable that is explained by the estimated regression equation.

Adjusted multiple coefficient of determination A measure of the goodness of fit of the

estimated multiple regression equation that adjusts for the number of independent vari-

ables in the model and thus avoids overestimating the impact of adding more independent

variables.

MulticollinearityThe term used to describe the correlation among the independent variables.

ŷi

ŷ

ŷ
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Categorical independent variable An independent variable with categorical data.

Dummy variable A variable used to model the effect of categorical independent variables.

A dummy variable may take only the value zero or one.

Leverage A measure of how far the values of the independent variables are from their

mean values.

Outlier An observation that does not fit the pattern of the other data.

Studentized deleted residuals Standardized residuals that are based on a revised standard

error of the estimate obtained by deleting observation i from the data set and then perform-

ing the regression analysis and computations.

Influential observationAn observation that has a strong influence on the regression results.

Cook’s distance measure A measure of the influence of an observation based on both the

leverage of observation i and the residual for observation i.

Logistic regression equation The mathematical equation relating E( y), the probability that

y � 1, to the values of the independent variables; that is, E( y) � P( y � 1	x1, x2, . . . , xp) �

Estimated logistic regression equation The estimate of the logistic regression equation 

based on sample data; that is, � estimate of P( y � 1	x1, x2, . . . , xp) �

Odds in favor of an event occurring The probability the event will occur divided by the

probability the event will not occur.

Odds ratio The odds that y � 1 given that one of the independent variables increased by

one unit (odds1) divided by the odds that y � 1 given no change in the values for the inde-

eb0�b1x1�b2x2�. . .�bpxp

1 � eb0�b1x1�b2x2�. . .�bpxp
 .ŷ

e�0��1x1��2x2�. . .��pxp

1 � e�0��1x1��2x2�. . .��pxp
 .

pendent variables (odds0); that is, Odds ratio � odds1
odds0.
Logit The natural logarithm of the odds in favor of y � 1; that is, g(x1, x2, . . . , xp) �

�0 � �1x1 � �2x2 � . . . � �pxp.

Estimated logit An estimate of the logit based on sample data; that is, (x1, x2, . . . , xp) �

b0 � b1x1 � b2x2 � . . . � bpxp.

Key Formulas

Multiple Regression Model

(15.1)

Multiple Regression Equation

(15.2)

Estimated Multiple Regression Equation

(15.3)

Least Squares Criterion

(15.4)

Relationship Among SST, SSR, and SSE

(15.7)SST � SSR � SSE

min �( yi � ŷi)
2

ŷ � b0 � b1x1 � b2 
x2 � . . . � bp 

xp

E( y) � �0 � �1x1 � �2 
x2 � . . . � �p 

xp

y � �0 � �1x1 � �2 
x2 � . . . � �p 

xp � �

ĝ
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Multiple Coefficient of Determination

(15.8)

Adjusted Multiple Coefficient of Determination

(15.9)

Mean Square Due to Regression

(15.12)

Mean Square Due to Error

(15.13)

F Test Statistic

(15.14)

t Test Statistic

(15.15)

Standardized Residual for Observation i

(15.23)

Standard Deviation of Residual i

(15.24)

Cook’s Distance Measure

(15.25)

Logistic Regression Equation

(15.27)E( y) �
e 

�0��1x1��2x2�...��p xp

1 � e 
�0��1x1��2x2�...��p xp

Di �
( yi � ŷi)

2

( p � 1)s2  � hi

(1 � hi)
2�

syi� ŷi
� s �1 � hi

yi � ŷi

syi� ŷi

t �
bi

sbi

F �
MSR

MSE

MSE �
SSE

n � p � 1

MSR �
SSR

p

R 2
a � 1 � (1 � R 2) 

n � 1

n � p � 1

R 2
�

SSR

SST

Estimated Logistic Regression Equation

(15.30)ŷ � estimate of P( y � 1�x1, x2, . . . , xp 
) �

eb0�b1x1�b2x2�...�bp xp

1 � eb0�b1x1�b2x2�...�bp xp
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Odds Ratio

(15.34)

Logit

(15.35)

Estimated Logit

(15.37)

Supplementary Exercises

49. The admissions officer for Clearwater College developed the following estimated regres-

sion equation relating the final college GPA to the student’s SAT mathematics score and

high-school GPA.

where

a. Interpret the coefficients in this estimated regression equation.

b. Estimate the final college GPA for a student who has a high-school average of 84 and

a score of 540 on the SAT mathematics test.

50. The personnel director for Electronics Associates developed the following estimated re-

gression equation relating an employee’s score on a job satisfaction test to his or her length

of service and wage rate.

where

ŷ � 14.4 � 8.69x1 � 13.5x2

x1 �

x2 �

y �

high-school grade point average

SAT mathematics score

final college grade point average

ŷ � �1.41 � .0235x1 � .00486x2

ĝ(x1, x2, . . . , xp) � b0 � b1x1 � b2 
x2 � . . . � bp 

xp

g(x1, x2, . . . , xp) � �0 � �1x1 � �2 
x2 � . . . � �p 

xp

Odds ratio �
odds1

odds0

a. Interpret the coefficients in this estimated regression equation.

b. Develop an estimate of the job satisfaction test score for an employee who has four years

of service and makes $6.50 per hour.

x1 �

x2 �

y �

 

length of service (years)

wage rate (dollars)

job satisfaction test score (higher scores

indicate greater job satisfaction)
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51. A partial computer output from a regression analysis follows.

a. Compute the missing entries in this output.

b. Use the F test and α � .05 to see whether a significant relationship is present.

c. Use the t test and α � .05 to test H0: �1 � 0 and H0: �2 � 0.

The regression equation is

Y = 8.103 + 7.602 X1 + 3.111 X2

Predictor             Coef       SE Coef           T

Constant           _______         2.667       _____

X1                 _______         2.105       _____

X2                 _______         0.613       _____

S = 3.335      R-sq = 92.3%     R-sq(adj) = _____%

Analysis of Variance

SOURCE              DF         SS         MS         F

Regression      ______       1612     ______     _____

Residual Error      12     ______     ______ 

Total           ______     ______

The regression equation is

Y = -1.41 + .0235 X1 + .00486 X2

Predictor             Coef        SE Coef           T

Constant           -1.4053         0.4848       _____

X1                0.023467       0.008666       _____

X2                  ______       0.001077       _____

S = 0.1298      R–sq = ______   R–sq(adj) = ______

Analysis of Variance

SOURCE             DF           SS         MS         F

Regression      _____      1.76209      _____     _____

Residual Error  _____      _______      _____

Total               9      1.88000

d. Compute .

52. Recall that in exercise 49, the admissions officer for Clearwater College developed the

following estimated regression equation relating final college GPA to the student’s SAT

mathematics score and high-school GPA.

where

A portion of the Minitab computer output follows.

x1 �

x2 �

y �

high-school grade point average

SAT mathematics score

final college grade point average

ŷ � �1.41 � .0235x1 � .00486x2

R2
a
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a. Complete the missing entries in this output.

b. Use the F test and a .05 level of significance to see whether a significant relationship

is present.

c. Use the t test and α � .05 to test H0: �1 � 0 and H0: �2 � 0.

d. Did the estimated regression equation provide a good fit to the data? Explain.

53. Recall that in exercise 50 the personnel director for Electronics Associates developed the

following estimated regression equation relating an employee’s score on a job satisfaction

test to length of service and wage rate.

where

A portion of the Minitab computer output follows.

x1 �

x2 �

y �

 

length of service (years)

wage rate (dollars)

job satisfaction test score (higher scores

indicate greater job satisfaction)

ŷ � 14.4 � 8.69x1 � 13.5x2

The regression equation is

Y = 14.4 – 8.69 X1 + 13.52 X2

Predictor             Coef        SE Coef            T

Constant            14.448          8.191         1.76

X1                  ______          1.555        _____

X2                  13.517          2.085        _____

S = 3.773       R–sq = ______%  R–sq(adj) = ______%

Analysis of Variance

SOURCE             DF           SS         MS         F

Regression          2       ______      _____     _____

Residual Error  _____        71.17      _____

Total               7        720.0

a. Complete the missing entries in this output.

b. Compute F and test using α � .05 to see whether a significant relationship is present.

c. Did the estimated regression equation provide a good fit to the data? Explain.

d. Use the t test and α � .05 to test H0: �1 � 0 and H0: �2 � 0.

54. The Tire Rack, America’s leading online distributor of tires and wheels, conducts exten-

sive testing to provide customers with products that are right for their vehicle, driving style,

and driving conditions. In addition, the Tire Rack maintains an independent consumer sur-

vey to help drivers help each other by sharing their long-term tire experiences. The fol-

lowing data show survey ratings (1 to 10 scale with 10 the highest rating) for 18 maximum

performance summer tires (Tire Rack website, February 3, 2009). The variable Steering

rates the tire’s steering responsiveness, Tread Wear rates quickness of wear based on the

driver’s expectations, and Buy Again rates the driver’s overall tire satisfaction and desire

to purchase the same tire again.
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a. Develop an estimated regression equation that can be used to predict the Buy Again

rating given based on the Steering rating. At the .05 level of significance, test for a sig-

nificant relationship.

b. Did the estimated regression equation developed in part (a) provide a good fit to the

data? Explain.

c. Develop an estimated regression equation that can be used to predict the Buy Again

rating given the Steering rating and the Tread Wear rating. 

d. Is the addition of the Tread Wear independent variable significant? Use α = .05.

55. Consumer Reports provided extensive testing and ratings for 24 treadmills. An overall

score, based primarily on ease of use, ergonomics, exercise range, and quality, was devel-

oped for each treadmill tested. In general, a higher overall score indicates better perfor-

mance. The following data show the price, the quality rating, and overall score for the 24

treadmills (Consumer Reports, February 2006). 

Tire Steering Tread Wear Buy Again

Goodyear Assurance TripleTred 8.9 8.5 8.1
Michelin HydroEdge 8.9 9.0 8.3
Michelin Harmony 8.3 8.8 8.2
Dunlop SP 60 8.2 8.5 7.9
Goodyear Assurance ComforTred 7.9 7.7 7.1
Yokohama Y372 8.4 8.2 8.9
Yokohama Aegis LS4 7.9 7.0 7.1
Kumho Power Star 758 7.9 7.9 8.3
Goodyear Assurance 7.6 5.8 4.5
Hankook H406 7.8 6.8 6.2
Michelin Energy LX4 7.4 5.7 4.8
Michelin MX4 7.0 6.5 5.3
Michelin Symmetry 6.9 5.7 4.2
Kumho 722 7.2 6.6 5.0
Dunlop SP 40 A/S 6.2 4.2 3.4
Bridgestone Insignia SE200 5.7 5.5 3.6
Goodyear Integrity 5.7 5.4 2.9
Dunlop SP20 FE 5.7 5.0 3.3

Brand & Model Price Quality Score

Landice L7 2900 Excellent 86
NordicTrack S3000 3500 Very good 85
SportsArt 3110 2900 Excellent 82
Precor 3500 Excellent 81
True Z4 HRC 2300 Excellent 81
Vision Fitness T9500 2000 Excellent 81
Precor M 9.31 3000 Excellent 79
Vision Fitness T9200 1300 Very good 78
Star Trac TR901 3200 Very good 72
Trimline T350HR 1600 Very good 72
Schwinn 820p 1300 Very good 69
Bowflex 7-Series 1500 Excellent 83
NordicTrack S1900 2600 Very good 83
Horizon Fitness PST8 1600 Very good 82
Horizon Fitness 5.2T 1800 Very good 80
Evo by Smooth Fitness FX30 1700 Very good 75
ProForm 1000S 1600 Very good 75
Horizon Fitness CST4.5 1000 Very good 74

(continued)
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a. Use these data to develop an estimated regression equation that could be used to esti-

mate the overall score given the price.

b. Use α � .05 to test for overall significance.

c. To incorporate the effect of quality, a categorical variable with three levels, we used two

dummy variables: Quality-E and Quality-VG. Each variable was coded 0 or 1 as follows.

Develop an estimated regression equation that could be used to estimate the overall

score given the price and the quality rating.

d. For the estimated regression equation developed in part (c), test for overall signifi-

cance using α � .10.

e. For the estimated regression equation developed in part (c), use the t test to determine

the significance of each independent variable. Use α � .10.

f. Develop a standardized residual plot. Does the pattern of the residual plot appear to

be reasonable?

g. Do the data contain any outliers or influential observations?

h. Estimate the overall score for a treadmill with a price of $2000 and a good quality rat-

ing. How much would the estimate change if the quality rating were very good? Explain.

56. A portion of a data set containing information for 45 mutual funds that are part of the

Morningstar Funds 500 for 2008 follows. The complete data set is available in the file

named MutualFunds. The data set includes the following five variables:

Type: The type of fund, labeled DE (Domestic Equity), IE (International Equity), and FI

(Fixed Income).

Net Asset Value ($): The closing price per share on December 31, 2007.

5-Year Average Return (%): The average annual return for the fund over the past 5 years.

Expense Ratio (%): The percentage of assets deducted each fiscal year for fund expenses.

Morningstar Rank: The risk adjusted star rating for each fund; Morningstar ranks go

from a low of 1-Star to a high of 5-Stars.

 Quality-VG � �1 if quality rating is very good

0 otherwise

 Quality-E � �1 if quality rating is excellent

0 otherwise

Brand & Model Price Quality Score

Keys Fitness 320t 1200 Very good 73
Smooth Fitness 7.1HR Pro 1600 Very good 73
NordicTrack C2300 1000 Good 70
Spirit Inspire 1400 Very good 70
ProForm 750 1000 Good 67
Image 19.0 R 600 Good 66

Net 5-Year
Asset Average Expense

Fund Value Return Ratio Morningstar
Fund Name Type ($) (%) (%) Rank

Amer Cent Inc & Growth Inv DE 28.88 12.39 0.67 2-Star
American Century Intl. Disc IE 14.37 30.53 1.41 3-Star
American Century Tax-Free Bond FI 10.73 3.34 0.49 4-Star

fileWEB

MutualFunds
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a. Develop an estimated regression equation that can be used to predict the 5-year average

return given fund type. At the .05 level of significance, test for a significant relationship.

b. Did the estimated regression equation developed in part (a) provide a good fit to the

data? Explain.

c. Develop the estimated regression equation that can be used to predict the 5-year

average return given the type of fund, the net asset value, and the expense ratio. At the

.05 level of significance, test for a significant relationship. Do you think any variables

should be deleted from the estimated regression equation? Explain.

d. Morningstar Rank is a categorical variable. Because the data set contains only funds

with four ranks (2-Star through 5-Star), use the following dummy variables: 3Star-

Rank � 1 for a 3-Star fund, 0 otherwise; 4StarRank � 1 for a 4-Star fund, 0 other-

wise; and 5StarRank � 1 for a 5-Star fund, 0 otherwise. Develop an estimated

regression equation that can be used to predict the 5-year average return given the type

of fund, the expense ratio, and the Morningstar Rank. Using α � .05, remove any in-

dependent variables that are not significant.

e. Use the estimated regression equation developed in part (d) to estimate the 5-year

average return for a domestic equity fund with an expense ratio of 1.05% and a 3-Star

Morningstar Rank.

57. The U.S. Department of Energy’s Fuel Economy Guide provides fuel efficiency data for

cars and trucks (U.S. Department of Energy website, February 22, 2008). A portion of the

data for 311 compact, midsize, and large cars follows. The column labeled Class identifies

the size of the car; Compact, Midsize, or Large. The column labeled Displacement shows

the engine’s displacement in liters. The column labeled Fuel Type shows whether the car

uses premium (P) or regular (R) fuel, and the column labeled Hwy MPG shows the fuel

efficiency rating for highway driving in terms of miles per gallon. The complete data set

is contained in the file named FuelData.

Net 5-Year
Asset Average Expense

Fund Value Return Ratio Morningstar
Fund Name Type ($) (%) (%) Rank

American Century Ultra DE 24.94 10.88 0.99 3-Star
Ariel DE 46.39 11.32 1.03 2-Star

Artisan Intl Val IE 25.52 24.95 1.23 3-Star

Artisan Small Cap DE 16.92 15.67 1.18 3-Star

Baron Asset DE 50.67 16.77 1.31 5-Star

Brandywine DE 36.58 18.14 1.08 4-Star
. . . . . .
. . . . . .
. . . . . .

Car Class Displacement Fuel Type Hwy MPG

1 Compact 3.1 P 25
2 Compact 3.1 P 25
3 Compact 3 P 25
. . . . .
. . . . .
. . . . .

161 Midsize 2.4 R 30
162 Midsize 2 P 29

. . . . .

. . . . .

. . . . .

310 Large 3 R 25
311 Large 3 R 25

fileWEB
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Income Household Amount Income Household Amount
($1000s) Size Charged ($) ($1000s) Size Charged ($)

54 3 4016 54 6 5573

30 2 3159 30 1 2583

32 4 5100 48 2 3866

50 5 4742 34 5 3586

31 2 1864 67 4 5037

55 2 4070 50 2 3605

37 1 2731 67 5 5345

40 2 3348 55 6 5370

66 4 4764 52 2 3890

51 3 4110 62 3 4705 

25 3 4208 64 2 4157

48 4 4219 22 3 3579

27 1 2477 29 4 3890

33 2 2514 39 2 2972

65 3 4214 35 1 3121

63 4 4965 39 4 4183

42 6 4412 54 3 3730

21 2 2448 23 6 4127

44 1 2995 27 2 2921

37 5 4171 26 7 4603

62 6 5678 61 2 4273

21 3 3623 30 2 3067

55 7 5301 22 4 3074

42 2 3020 46 5 4820

41 7 4828 66 4 5149

a. Develop an estimated regression equation that can be used to predict the fuel efficiency

for highway driving given the engine’s displacement. Test for significance using α � .05.

b. Consider the addition of the dummy variables ClassMidsize and ClassLarge. The value

of ClassMidsize is 1 if the car is a midsize car and 0 otherwise; the value of ClassLarge

is 1 if the car is a large car and 0 otherwise. Thus, for a compact car, the value of Class-

Midsize and the value of ClassLarge is 0. Develop the estimated regression equation

that can be used to predict the fuel efficiency for highway driving given the engine’s

displacement and the dummy variables ClassMidsize and ClassLarge.

c. Use α � .05 to determine whether the dummy variables added in part (b) are significant.

d. Consider the addition of the dummy variable FuelPremium, where the value of

FuelPremium is 1 if the car uses premium fuel and 0 if the car uses regular fuel.

Develop the estimated regression equation that can be used to predict the fuel effi-

ciency for highway driving given the engine’s displacement, the dummy variables

ClassMidsize and ClassLarge, and the dummy variable FuelPremium.

e. For the estimated regression equation developed in part (d), test for overall signifi-

cance and individual significance using α � .05.

Case Problem 1 Consumer Research, Inc.

Consumer Research, Inc., is an independent agency that conducts research on consumer atti-

tudes and behaviors for a variety of firms. In one study, a client asked for an investigation of

consumer characteristics that can be used to predict the amount charged by credit card users.

Data were collected on annual income, household size, and annual credit card charges for a

sample of 50 consumers. The following data are contained in the file named Consumer.

fileWEB
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Managerial Report

1. Use methods of descriptive statistics to summarize the data. Comment on the findings.

2. Develop estimated regression equations, first using annual income as the indepen-

dent variable and then using household size as the independent variable. Which vari-

able is the better predictor of annual credit card charges? Discuss your findings.

3. Develop an estimated regression equation with annual income and household size

as the independent variables. Discuss your findings.

4. What is the predicted annual credit card charge for a three-person household with

an annual income of $40,000?

5. Discuss the need for other independent variables that could be added to the model.

What additional variables might be helpful?

Case Problem 2 Alumni Giving

Alumni donations are an important source of revenue for colleges and universities. If ad-

ministrators could determine the factors that could lead to increases in the percentage of

alumni who make a donation, they might be able to implement policies that could lead to in-

creased revenues. Research shows that students who are more satisfied with their contact

with teachers are more likely to graduate. As a result, one might suspect that smaller class

sizes and lower student-faculty ratios might lead to a higher percentage of satisfied gradu-

ates, which in turn might lead to increases in the percentage of alumni who make a donation.

Table 15.13 shows data for 48 national universities (America’s Best Colleges,Year 2000 ed.).

The column labeled Graduation Rate is the percentage of students who initially enrolled at

the university and graduated. The column labeled % of Classes Under 20 shows the per-

centage of classes offered with fewer than 20 students. The column labeled Student-Faculty

Ratio is the number of students enrolled divided by the total number of faculty. Finally, the

column labeled Alumni Giving Rate is the percentage of alumni who made a donation to the

university.

Managerial Report

1. Use methods of descriptive statistics to summarize the data.

2. Develop an estimated regression equation that can be used to predict the alumni giv-

ing rate given the number of students who graduate. Discuss your findings.

3. Develop an estimated regression equation that could be used to predict the alumni

giving rate using the data provided.

4. What conclusions and recommendations can you derive from your analysis?

Case Problem 3 PGA Tour Statistics

The Professional Golfers Association (PGA) maintains data on performance and earnings

for members of the PGA Tour. The top 125 players based on total earnings in PGA Tour

events are exempt for the following season. Making the top 125 money list is important be-

cause a player who is “exempt” has qualified to be a full-time member of the PGA tour for

the following season. 

Scoring average is generally considered the most important statistic in terms of success

on the PGATour. To investigate the relationship between variables such as driving distance,

driving accuracy, greens in regulation, sand saves, and average putts per round have on 

average score, year-end performance data for the 125 players who had the highest total
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% of Student- Alumni
Graduation Classes Faculty Giving

State Rate Under 20 Ratio Rate

Boston College MA 85 39 13 25

Brandeis University MA 79 68 8 33

Brown University RI 93 60 8 40

California Institute of Technology CA 85 65 3 46

Carnegie Mellon University PA 75 67 10 28

Case Western Reserve Univ. OH 72 52 8 31

College of William and Mary VA 89 45 12 27

Columbia University NY 90 69 7 31

Cornell University NY 91 72 13 35

Dartmouth College NH 94 61 10 53

Duke University NC 92 68 8 45

Emory University GA 84 65 7 37

Georgetown University DC 91 54 10 29

Harvard University MA 97 73 8 46

Johns Hopkins University MD 89 64 9 27

Lehigh University PA 81 55 11 40

Massachusetts Inst. of Technology MA 92 65 6 44

New York University NY 72 63 13 13

Northwestern University IL 90 66 8 30

Pennsylvania State Univ. PA 80 32 19 21

Princeton University NJ 95 68 5 67

Rice University TX 92 62 8 40

Stanford University CA 92 69 7 34

Tufts University MA 87 67 9 29

Tulane University LA 72 56 12 17

U. of California–Berkeley CA 83 58 17 18

U. of California–Davis CA 74 32 19 7

U. of California–Irvine CA 74 42 20 9

U. of California–Los Angeles CA 78 41 18 13

U. of California–San Diego CA 80 48 19 8

U. of California–Santa Barbara CA 70 45 20 12

U. of Chicago IL 84 65 4 36

U. of Florida FL 67 31 23 19

U. of Illinois–Urbana Champaign IL 77 29 15 23

U. of Michigan–Ann Arbor MI 83 51 15 13

U. of North Carolina–Chapel Hill NC 82 40 16 26

U. of Notre Dame IN 94 53 13 49

U. of Pennsylvania PA 90 65 7 41

U. of Rochester NY 76 63 10 23

U. of Southern California CA 70 53 13 22

U. of Texas–Austin TX 66 39 21 13

U. of Virginia VA 92 44 13 28

U. of Washington WA 70 37 12 12

U. of Wisconsin–Madison WI 73 37 13 13

Vanderbilt University TN 82 68 9 31

Wake Forest University NC 82 59 11 38

Washington University–St. Louis MO 86 73 7 33

Yale University CT 94 77 7 50

TABLE 15.13 DATA FOR 48 NATIONAL UNIVERSITIES
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earnings in PGA Tour events for 2008 are contained in the file named PGATour (PGA Tour

website, 2009). Each row of the data set corresponds to a PGA Tour player, and the data

have been sorted based upon total earnings. Descriptions for the variables in the data set

follow. 

Money: Total earnings in PGA Tour events.

Scoring Average: The average number of strokes per completed round. 

DrDist (Driving Distance): DrDist is the average number of yards per measured drive.

On the PGA Tour driving distance is measured on two holes per round. Care is taken to

select two holes which face in opposite directions to counteract the effect of wind. Drives

are measured to the point at which they come to rest regardless of whether they are in the

fairway or not. 

DrAccu (Driving Accuracy): The percentage of time a tee shot comes to rest in the

fairway (regardless of club). Driving accuracy is measured on every hole, excluding 

par 3s.

GIR (Greens in Regulation): The percentage of time a player was able to hit the green

in regulation. A green is considered hit in regulation if any portion of the ball is touching

the putting surface after the GIR stroke has been taken. The GIR stroke is determined by

subtracting 2 from par (1st stroke on a par 3, 2nd on a par 4, 3rd on a par 5). In other

words, a green is considered hit in regulation if the player has reached the putting surface

in par minus two strokes.

Sand Saves: The percentage of time a player was able to get “up and down” once in a

greenside sand bunker (regardless of score). “Up and down” indicates it took the player 2

shots or less to put the ball in the hole from a greenside sand bunker. 

PPR (Putts Per Round): The average number of putts per round. 

Scrambling: The percentage of time a player missed the green in regulation but still

made par or better. 

Managerial Report

1. To predict Scoring Average, develop estimated regression equations, first using DrDist

as the independent variable and then using DrAccu as the independent variable. Which

variable is the better predictor of Scoring Average? Discuss your findings.

2. Develop an estimated regression equation with GIR as the independent variable.

Compare your findings with the results obtained using DrDist and DrAccu.

3. Develop an estimated regression equation with GIR and Sand Saves as the inde-

pendent variables. Discuss your findings.

4. Develop an estimated regression equation with GIR and PPR as the independent

variables. Discuss your findings.

5. Develop an estimated regression equation with GIR and Scrambling as the inde-

pendent variables. Discuss your findings.

6. Compare the results obtained for the estimated regression equations that use GIR

and Sand Saves, GIR and PPR, and GIR and Scrambling as the two independent

variables. If you had to select one of these two-independent variable estimated re-

gression equations to predict Scoring Average, which estimated regression equation

would you use? Explain.

7. Develop the estimated regression equation that uses GIR, Sand Saves, and PPR to

predict Scoring Average. Compare the results to an estimated regression equation

that uses GIR, PPR, and Scrambling as the independent variables. 

8. Develop an estimated regression equation that uses GIR, Sand Saves, PPR, and

Scrambling to predict Scoring Average. Discuss your results. 
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708 Chapter 15 Multiple Regression

Case Problem 4 Predicting Winning Percentage for the NFL

The National Football League (NFL) records a variety of performance data for individuals

and teams. Some of the year-end performance data for the 2005 season are contained in the

file named NFLStats (NFL website). Each row of the data set corresponds to an NFL team,

and the teams are ranked by winning percentage. Descriptions for the data follow:

WinPct Percentage of games won

TakeInt Takeaway interceptions; the total number of interceptions made by the 

team’s defense

TakeFum Takeaway fumbles; the total number of fumbles recovered by the team’s

defense

GiveInt Giveaway interceptions; the total number of interceptions made by the 

team’s offense 

GiveFum Giveaway fumbles; the total number of fumbles made by the team’s 

offense

DefYds/G Average number of yards per game given up on defense

RushYds/G Average number of rushing yards per game

PassYds/G Average number of passing yards per game

FGPct Percentage of field goals

Managerial Report

1. Use methods of descriptive statistics to summarize the data. Comment on the findings.

2. Develop an estimated regression equation that can be used to predict WinPct using

DefYds/G, RushYds/G, PassYds/G, and FGPct. Discuss your findings. 

3. Starting with the estimated regression equation developed in part (2), delete any in-

dependent variables that are not significant and develop a new estimated regression

equation that can be used to predict WinPct. Use α � .05.

4. Some football analysts believe that turnovers are one of the most important factors

in determining a team’s success. With Takeaways � TakeInt � TakeFum and

Giveaways � GiveInt � GiveFum, let NetDiff � Takeaways � Giveaways. Develop

an estimated regression equation that can be used to predict WinPct using NetDiff.

Compare your results with the estimated regression equation developed in part (3).

5. Develop an estimated regression equation that can be used to predict WinPct using

all the data provided.

Appendix 15.1 Multiple Regression with Minitab

In Section 15.2 we discussed the computer solution of multiple regression problems by

showing Minitab’s output for the Butler Trucking Company problem. In this appendix we

describe the steps required to generate the Minitab computer solution. First, the data must

be entered in a Minitab worksheet. The miles traveled are entered in column C1, the num-

ber of deliveries are entered in column C2, and the travel times (hours) are entered in col-

umn C3. The variable names Miles, Deliveries, and Time were entered as the column

headings on the worksheet. In subsequent steps, we refer to the data by using the variable

names Miles, Deliveries, and Time or the column indicators C1, C2, and C3. The following

steps describe how to use Minitab to produce the regression results shown in Figure 15.4.
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Step 1. Select the Stat menu

Step 2. Select the Regression menu

Step 3. Choose Regression

Step 4. When the Regression dialog box appears:

Enter Time in the Response box

Enter Miles and Deliveries in the Predictors box

Click OK

Appendix 15.2 Multiple Regression with Excel

In Section 15.2 we discussed the computer solution of multiple regression problems by

showing Minitab’s output for the Butler Trucking Company problem. In this appendix we

describe how to use Excel’s Regression tool to develop the estimated multiple regression

equation for the Butler Trucking problem. Refer to Figure 15.14 as we describe the tasks

involved. First, the labels Assignment, Miles, Deliveries, and Time are entered into cells

A1:D1 of the worksheet, and the sample data into cells B2:D11. The numbers 1–10 in cells

A2:A11 identify each observation.

FIGURE 15.14 EXCEL OUTPUT FOR BUTLER TRUCKING WITH TWO INDEPENDENT VARIABLES

A B C D E F G H I J

1 Assignment Miles Deliveries Time

2 1 100 4 9.3

3 2 50 3 4.8

4 3 100 4 8.9

5 4 100 2 6.5

6 5 50 2 4.2

7 6 80 2 6.2

8 7 75 3 7.4

9 8 65 4 6

10 9 90 3 7.6

11 10 90 2 6.1

12

13 SUMMARY OUTPUT

14

15 Regression Statistics

16 Multiple R 0.9507

17 R Square 0.9038

18 Adjusted R Square 0.8763

19 Standard Error 0.5731

20 Observations 10

21

22 ANOVA

23 df SS MS F Significance F

24 Regression 2 21.6006 10.8003 32.8784 0.0003

25 Residual 7 2.2994 0.3285

26 Total 9 23.9

27

28 Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Lower 99.0% Upper 99.0%

29 Intercept -0.8687 0.9515 -0.9129 0.3916 -3.1188 1.3813 -4.1986 2.4612

30 Miles 0.0611 0.0099 6.1824 0.0005 0.0378 0.0845 0.0265 0.0957

31 Deliveries 0.9234 0.2211 4.1763 0.0042 0.4006 1.4463 0.1496 1.6972

32
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710 Chapter 15 Multiple Regression

The following steps describe how to use the Regression tool for the multiple regres-

sion analysis.

Step 1. Click the Data tab on the Ribbon

Step 2. In the Analysis group, click Data Analysis

Step 3. Choose Regression from the list of Analysis Tools

Step 4. When the Regression dialog box appears:

Enter D1:D11 in the Input Y Range box

Enter B1:C11 in the Input X Range box

Select Labels

Select Confidence Level

Enter 99 in the Confidence Level box

Select Output Range

Enter A13 in the Output Range box (to identify the upper left corner of 

the section of the worksheet where the output will appear)

Click OK

In the Excel output shown in Figure 15.14 the label for the independent variable x1 is Miles

(see cell A30), and the label for the independent variable x2 is Deliveries (see cell A31). The

estimated regression equation is

Note that using Excel’s Regression tool for multiple regression is almost the same as using

it for simple linear regression. The major difference is that in the multiple regression case

a larger range of cells is required in order to identify the independent variables.

Appendix 15.3 Logistic Regression with Minitab

Minitab calls logistic regression with a dependent variable that can only assume the values

0 and 1 Binary Logistic Regression. In this appendix we describe the steps required to use

Minitab’s Binary Logistic Regression procedure to generate the computer output for the

Simmons Stores problem shown in Figure 15.13. First, the data must be entered in a Minitab

worksheet. The amounts customers spent last year at Simmons (in thousands of dollars) are

entered into column C2, the credit card data (1 if a Simmons card; 0 otherwise) are entered

into column C3, and the coupon use data (1 if the customer used the coupon; 0 otherwise) 

are entered in column C4. The variable names Spending, Card, and Coupon are entered as 

the column headings on the worksheet. In subsequent steps, we refer to the data by using

the variable names Spending, Card, and Coupon or the column indicators C2, C3, and 

C4. The following steps will generate the logistic regression output.

Step 1. Select the Stat menu

Step 2. Select the Regression menu

Step 3. Choose Binary Logistic Regression

Step 4. When the Binary Logistic Regression dialog box appears:

Enter Coupon in the Response box

Enter Spending and Card in the Model box

Click OK

The information in Figure 15.13 will now appear as a portion of the output.

ŷ � � .8687 � .0611x1 � .9234x2
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Appendix 15.4 Multiple Regression Analysis Using StatTools

In this appendix we show how StatTools can be used to perform the regression analysis com-

putations for the Butler Trucking problem. Begin by using the Data Set Manager to create a

StatTools data set for these data using the procedure described in the appendix in Chapter 1.

The following steps describe how StatTools can be used to provide the regression results.

Step 1. Click the StatTools tab on the Ribbon

Step 2. In the Analyses group, click Regression and Classification

Step 3. Choose the Regression option

Step 4. When the StatTools—Regression dialog box appears:

Select Multiple in the Regression Type box

In the Variables section:

Click the Format button and select Unstacked

In the column labeled I select Miles

In the column labeled I select Deliveries

In the column labeled D select Time

Click OK

The regression analysis output will appear in a new worksheet.

The StatTools—Regression dialog box contains a number of more advanced options for

developing prediction interval estimates and producing residual plots. The StatTools Help

facility provides information on using all of these options.

Appendix 15.4 Multiple Regression Analysis Using StatTools 711
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